

SAS Certification Prep Guide: Base
Programming for SAS 9

 2

Table of Contents

Chapter 1: Basic Concepts ...7

Overview...7
Introduction...7
Objectives..7

SAS Programs ...7
Components of SAS Programs...7
Characteristics of SAS Programs..8
Layout for SAS Programs ..9
Processing SAS Programs..9
Log Messages ..10
Results of Processing..10

SAS Libraries ...13
How SAS Files Are Stored ...13
Storing Files Temporarily or Permanently ...14

Referencing SAS Files ..14
Two-Level Names...14
Referencing Temporary SAS Files ..15
Referencing Permanent SAS Files ..15
Rules for SAS Names ..16

SAS Data Sets ...16
Overview of Data Sets ..16
Descriptor Portion ..17
Data Portion...17
Observations (Rows) ..17

Variable Attributes ...17
Name ..18
Type..18
Length...19
Format ..19
Informat ..20
Label ...20
Variables (Columns) ...21
Missing Values ...21

Summary ..22
Text Summary ...22
Points to Remember ...23

Quiz..24
Chapter 2: Referencing Files and Setting Options..28

Overview...28
Introduction...28
Objectives..28

Referencing Files ...28

 3

SAS Libraries..28
Assigning Librefs ..28
Verifying Librefs ...29
How Long Librefs Remain in Effect ..29
Specifying Two-Level Names...30
Other Formats..30

Viewing the Contents of SAS Libraries...31
The CONTENTS Procedure ..32
The DATASETS Procedure...34

Setting SAS System Options ...35
SAS Output ..35
Handling Two-Digit Year Values: Year 2000 Compliance40

Viewing System Options...44
The OPTIONS Procedure...44

Additional System Options..45
Summary ..46

Text Summary ...46
Points to Remember ...47

Quiz..47
Chapter 3: Editing and Debugging SAS Programs..52

Overview...52
Introduction...52
Objectives..52

SAS Program Layout ..52
Interpreting Error Messages ...53

Error Types..53
Syntax Errors ...53

Correcting Errors ...54
Resubmitting a Revised Program...55

Resolving Common Problems..56
Missing RUN Statement ..56
Missing Semicolon ..57
Unbalanced Quotation Marks...58
Invalid Option ..60

Additional Features ..61
Comments in SAS Programs..61
SAS System Options ...61

Summary ..62
Text Summary ...62
Points to Remember ...62

Quiz..62
Chapter 4: Creating List Reports ..66

Overview...66
Introduction...66

 4

Objectives..66
Types of Reports ...66

Basic Report...66
Column Totals..68
Sorting and Labels..69
Selected Observations and Variables ...70

Creating a Basic Report..71
Selecting Observations ...72
Removing the OBS Column ...74

Identifying Observations ..74
Example ..75

Selecting Observations...76
Specifying WHERE Expressions..78
Using the CONTAINS Operator ..78
Specifying Compound WHERE Expressions...78
Examples of WHERE Statements ...78

Sorting Data..79
Example ..79

Generating Column Totals ..81
Requesting Subtotals ..82
Creating a Customized Layout with BY Groups and ID Variables84
Requesting Subtotals on Separate Pages ...85

Double-Spacing Listing Output..87
Specifying Titles and Footnotes ..87

TITLE and FOOTNOTE Statements ..88
Modifying and Canceling Titles and Footnotes ..90

Assigning Descriptive Labels...91
Temporarily Assigning Labels to Variables..91

Formatting Data Values..93
Temporarily Assigning Formats to Variables ...93
Specifying SAS Formats ..94

Using Permanently Assigned Labels and Formats ...96
Additional Features ..97
Summary ..97

Text Summary ...97
Points to Remember ...99

Quiz..100
Chapter 5: Creating SAS Data Sets from Raw Data..107

Overview...107
Introduction...107
Objectives..107

Raw Data Files ..107
Steps to Create a SAS Data Set ..108
Referencing a SAS Library ..109

 5

Using a LIBNAME Statement ...109
Referencing a Raw Data File...109

Using a FILENAME Statement..109
Referencing a Fully Qualified Filename...111
Referencing a File in an Aggregate Storage Location111

Writing a DATA Step Program...111
Naming the Data Set ..111
Specifying the Raw Data File...112
Column Input...113
Describing the Data..114

Submitting the DATA Step Program ..116
Verifying the Data ..116
Checking DATA Step Processing ..117
Listing the Data Set ..118
Reading the Entire Raw Data File ..119
Invalid Data ...119

Creating and Modifying Variables..121
SAS Expressions...122
Using Operators in SAS Expressions ..122
More Examples of Assignment Statements ...123
Date Constants ..124

Subsetting Data...125
Reading Instream Data ..126

Example ..127
Steps to Create a Raw Data File ...128

Using the_NULL_ Keyword..128
Specifying the Raw Data File...129
Describing the Data..129

Additional Features ..130
Summary ..131

Text Summary ...131
Points to Remember ...132

Quiz..133
Chapter 6: Understanding DATA Step Processing ..140

Overview...140
Introduction...140
Objectives..140

Writing Basic DATA Steps...140
How SAS Processes Programs...142
Compilation Phase ...142

Input Buffer ...142
Program Data Vector ..143
Syntax Checking...143
Data Set Variables ..143

 6

Descriptor Portion of the SAS Data Set ..144
Summary of the Compilation Phase ...145

Execution Phase ..146
Example ..146
Initializing Variables..147
Input Data ...147
Input Pointer..147
End of the DATA Step...149
Iterations of the DATA Step ..150
End-of-File Marker..152
Summary of the Execution Phase ..153
End of the Execution Phase...154

Debugging a DATA Step...155
Diagnosing Errors in the Compilation Phase ...155
Diagnosing Errors in the Execution Phase ..155

Testing Your Programs...159
Writing a NULL Data Set ...159
Limiting Observations ...160
PUT Statement...160

Summary ..162
Text Summary ...162
Points to Remember ...163

Quiz..164
Chapter 7: Creating and Applying User-Defined ..167

Overview...167
Introduction...167
Objectives..167

Introduction to PROC FORMAT ...167
Invoking PROC FORMAT ..168

Permanently Storing Your Formats ..168
Defining a Unique Format ..169

Specifying Value Ranges ...171
Defining Multiple Formats ...171

Associating User-Defined Formats with Variables173
Referencing Your Formats...173
Assigning Your Formats to Variables..173
Displaying a List of Your Formats ..175

Summary ..176
Text Summary ...176
Points to Remember ...176

Quiz..177

 7

Chapter 1: Basic Concepts

Overview

Introduction

To program effectively using SAS, you need to understand basic concepts about SAS programs
and the SAS files that they process. In particular, you need to be familiar with SAS data sets .

In this chapter, you'll examine a simple SAS program and see how it works. You'll see how SAS
data sets are stored temporarily or permanently in SAS libraries . You'll also learn details about
SAS data sets, which are files that contain data that is logically arranged in a form that SAS can
understand.

Objectives

In this chapter, you learn about
� the structure and components of SAS programs
� the steps involved in processing SAS programs
� SAS libraries and the types of SAS files that they contain
� temporary and permanent SAS libraries
� The structure and components of SAS data sets.

SAS Programs

You can use SAS programs to access, manage, analyze, or present your data. Let's begin by
looking at a simple SAS program.

data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

This program creates a new SAS data set from an existing SAS data set and then prints a listing
of the new data set. A SAS data set is a data file that is formatted in a way that SAS can
understand.

Let's see how this program works.

Components of SAS Programs

 8

Our sample SAS program contains two steps: a DATA step and a PROC step .

data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

These two types of steps, alone or combined, form most SAS programs.

A SAS program can consist of a DATA step

or a PROC step

or any combination of DATA and PROC steps.

DATA steps typically create or modify SAS data sets. They can also be used to produce custom-
designed reports. For example, you can use DATA steps to
� put your data into a SAS data set
� compute values
� check for and correct errors in your data
� produce new SAS data sets by subsetting, merging, and updating existing data sets.

PROC (procedure) steps are pre-written routines that enable you to analyze and process the
data in a SAS data set and to present the data in the form of a report. PROC steps sometimes
create new SAS data sets that contain the results of the procedure. PROC steps can list, sort,
and summarize data. For example, you can use PROC steps to
� create a report that lists the data
� produce descriptive statistics
� create a summary report
� produce plots and charts.

Characteristics of SAS Programs

Next let's look at the individual statements in our sample program. SAS programs consist of SAS
statements . A SAS statement has two important characteristics:
� It usually begins with a SAS keyword .

 9

� It always ends with a semicolon .

As you've seen, a DATA step begins with a DATA statement, which begins with the keyword
DATA. A PROC step begins with a PROC statement, which begins with the keyword PROC. Our

sample program contains a DATA statement, a SET statement, a RUN statement, a
PROC PRINT statement, and another RUN statement.

Statements Sample Program Code

a DATA statement data clinic.admit2;

a SET statement set clinic.admit;

a RUN statement run;

a PROC PRINT statement proc print data=clinic.admit2;

another RUN statement run;

Layout for SAS Programs

SAS statements are in free format. This means that
� they can begin and end anywhere on a line
� one statement can continue over several lines
� several statements can be on a line.

Blanks or special characters separate "words" in a SAS statement.

Note You can specify SAS statements in uppercase or lowercase. In most situations,

text that is enclosed in quotation marks is case sensitive.

You’ve examined the general structure of our sample program. But what happens when you run
the program?

Processing SAS Programs

When you submit a SAS program, SAS begins reading the statements and checking them for
errors.

DATA and PROC statements signal the beginning of a new step. When SAS encounters a
subsequent DATA, PROC, or RUN statement (for DATA steps and most procedures) or a QUIT
statement (for some procedures), SAS stops reading statements and executes the previous step
in the program. In our sample program, each step ends with a RUN statement.

data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

Note The beginning of a new step (DATA or PROC) implies the end of the previous

step. Though the RUN statement is not always required between steps in a
SAS program, using it can make the SAS program easier to read and debug,
and it makes the SAS log easier to read.

 10

Log Messages

Each time a step is executed, SAS generates a log of the processing activities and the results of
the processing. The SAS log collects messages about the processing of SAS programs and
about any errors that occur.

When SAS processes our sample program, you see the log messages shown below. Notice that
you get separate sets of messages for each step in the program.
SAS Log

1 data clinic.: admit2;

2 set clinic.admit;

3 run;

NOTE: The data set CLINIC.ADMIT2 has 21

 observations and 9 variables.

NOTE: The DATA statement used 1.03 seconds

4 proc print data=clinic.admit2;

5 run;

NOTE: The PROCEDURE PRINT used 0.2 seconds.

Results of Processing

Suppose you submit the sample program below.

data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

When the program is processed, it
� creates the SAS data set Clinic.Admit2 in the DATA step. The DATA step produces

messages in the SAS log, but it does not create a report or other output.
� creates the following HTML report of the SAS data set Clinic.Admit2 :

Obs ID Name Sex Age Date Height Weight
ActLev
el

Fee

1 2458 Murray, W M 27 1 72 168
HIGH

85.20

2 2462 Almers, C F 34 3 66 152
HIGH

124.80

 11

Obs ID Name Sex Age Date Height Weight
ActLev
el

Fee

3 2501 Bonaventure,
T

F 31 17 61 123
LOW

149.75

4 2523 Johnson, R F 43 31 63 137
MOD

149.75

5 2539 LaMance, K M 51 4 71 158
LOW

124.80

6 2544 Jones, M M 29 6 76 193
HIGH

124.80

7 2552 Reberson, P F 32 9 67 151
MOD

149.75

8 2555 King, E M 35 13 70 173
MOD

149.75

9 2563 Pitts, D M 34 22 73 154
LOW

124.80

10 2568 Eberhardt, S F 49 27 64 172
LOW

124.80

11 2571 Nunnelly, A F 44 19 66 140
HIGH

149.75

12 2572 Oberon, M F 28 17 62 118
LOW

85.20

13 2574 Peterson, V M 30 6 69 147
MOD

149.75

14 2575 Quigley, M F 40 8 69 163
HIGH

124.80

15 2578 Cameron, L M 47 5 72 173
MOD

124.80

16 2579 Underwood,
K

M 60 22 71 191
LOW

149.75

17 2584 Takahashi, Y F 43 29 65 123
MOD

124.80

18 2586 Derber, B M 25 23 75 188
HIGH

85.20

19 2588 Ivan, H F 22 20 63 139
LOW

85.20

20 2589 Wilcox, E F 41 16 67 141
HIGH

149.75

21 2595 Warren, C M 54 7 71 183
MOD

149.75

 12

Obs ID Name Sex Age Date Height Weight
ActLev
el

Fee

Note Throughout this book, procedure output is shown in HTML in the style shown

above unless otherwise noted. You can learn how to create HTML output in
Chapter 2, Referencing Files and Setting Options .

You've seen the results of submitting our sample program. For other SAS programs, the results
of processing might vary:
� SAS programs often invoke procedures that create output in the form of a report, as is

the case with the TABULATE procedure.

 proc tabulate data=clinic.admit;

 class sex;

 var height weight;

 table sex*(height weight),mean;

 run;

 Mean

Sex

Height 64.82 F

Weight 141.73

Height 72.00 M

Weight 172.80

� Other SAS programs perform tasks such as sorting and managing data, which have no
visible results except for messages in the log . (All SAS programs produce log messages,
but some SAS programs produce only log messages.)

 proc copy in=clinic out=work;

 select admit;

run;
SAS Log

6 proc copy in: =clinic out=work;

7 select admit;

8 run;

NOTE: Copying CLINIC.ADMIT to WORK.ADMIT (memtype=D ATA).

NOTE: There were 21 observations read from the data set

 CLINIC.ADMIT.

NOTE: The data set WORK.ADMIT has 21 observations a nd 9

 variables.

NOTE: PROCEDURE COPY used (Total process time):

 real time 0.13 seconds

 13

 cpu time 0.08 seconds

Note You can turn off log messages by using system options, which you can learn

about in Chapter 2, Referencing Files and Setting Options .

SAS Libraries

You've learned about SAS programs and SAS data sets. Now let's look at SAS libraries to see
how SAS data sets and other SAS files are organized and stored.

How SAS Files Are Stored

Every SAS file is stored in a SAS library , which is a collection of SAS files. A SAS data library is
the highest level of organization for information within SAS.

SAS libraries have different implementations depending on your operating environment, but a
library usually corresponds to the level of organization that your host operating system uses to
access and store files. In some operating environments, a library is a physical collection of files.
In others, the files are only logically related.

For example, in the Windows and UNIX environments, a library is typically a group of SAS files in
the same folder or directory.

The table below summarizes the implementation of SAS libraries in various operating
environments.

Environment Library

Windows, UNIX,
OpenVMS
(directory based-
systems)

a group of SAS files that are stored in the same directory. Other
files can be stored in the directory, but only the files that have
SAS file extensions are recognized as part of the SAS library.
(Refer to the online documentation for more information.)

CMS a group of SAS files that have the same file type.

z/OS a specially formatted host data set in which only SAS files are
stored.

 14

Storing Files Temporarily or Permanently

Depending on the library name that you use when you create a file, you can store SAS files
temporarily or permanently.

Temporary SAS libraries last only for the current SAS session.

Storing files temporarily:

If you don't specify a library name when you create a file (or if you specify the library name
Work), the file is stored in the temporary SAS data library. When you end the session, the
temporary library and all of its files are deleted.

Permanent SAS libraries are available to you during subsequent SAS sessions.

Storing files permanently:

To store files permanently in a SAS data library, you specify a library name other than the default
library name Work .

For example, by specifying the library name Clinic when you create a file, you specify that the file
is to be stored in a permanent SAS data library until you delete it.

Note You can learn how to set up permanent SAS libraries in Chapter 2,

Referencing Files and Setting Options .

Referencing SAS Files

Two-Level Names

To reference a permanent SAS data set in your SAS programs, you use a two-level name :

libref.filename

In the two-level name, libref is the name of the SAS data library that contains the file, and
filename is the name of the file itself. A period separates the libref and filename.

 15

For example, in our sample program, Clinic.Admit is the two-level name for the SAS data set
Admit , which is stored in the library named Clinic .

Referencing Temporary SAS Files

To reference temporary SAS files, you can specify the default libref Work , a period, and the
filename. For example, the two-level name Work.Test references the SAS data set named Test
that is stored in the temporary SAS library Work .

Alternatively, you can use a one-level name (the filename only) to reference a file in a temporary
SAS library. When you specify a one-level name, the default libref Work is assumed. For
example, the one-level name Test also references the SAS data set named Test that is stored in
the temporary SAS library Work .

Info If the USER library is assigned, SAS uses the User library rather than the Work

library for one-level names. User is a permanent library. For more information,
see the SAS Language Reference: Concepts documentation.

Referencing Permanent SAS Files

You can see that Clinic.Admit and Clinic.Admit2 are permanent SAS data sets because the
library name is Clinic, not Work .

 16

So referencing a SAS file in any library except Work indicates that the SAS file is stored
permanently. For example, when our sample program creates Clinic.Admit2 , it stores the new
Admit2 data set permanently in the SAS library Clinic.

Rules for SAS Names

SAS data set names
� can be 1 to 32 characters long
� must begin with a letter (A–Z, either uppercase or lowercase) or an underscore (_)
� can continue with any combination of numbers, letters, or underscores.

These are examples of valid data set names:
� Payroll
� LABDATA1995_1997
� _EstimatedTaxPayments3

SAS Data Sets

So far, you've seen the components and characteristics of SAS programs, including how they
reference SAS data sets. Data sets are one type of SAS file. There are other types of SAS files
(such as catalogs), but this chapter focuses on SAS data sets. For many procedures and for
some DATA step statements, data must be in the form of a SAS data set to be processed. Now
let's take a closer look at SAS data sets.

Overview of Data Sets

As you saw in our sample program, for many of the data processing tasks that you perform with
SAS, you
� access data in the form of a SAS data set
� analyze, manage, or present the data.

Conceptually, a SAS data set is a file that consists of two parts: a descriptor portion and a data
portion . Sometimes a SAS data set also points to one or more indexes, which enable SAS to
locate records in the data set more efficiently. (The data sets that you see in this chapter do not
contain indexes.)

 17

Descriptor Portion

The descriptor portion of a SAS data set contains information about the data set, including
� the name of the data set
� the date and time that the data set was created
� the number of observations
� the number of variables.

Let's look at another SAS data set. The table below lists part of the descriptor portion of the data
set Clinic.Insure , which contains insurance information for patients who are admitted to a
wellness clinic. (It's a good idea to give your data set a name that is descriptive of the contents.)

Data Set Name: CLINIC.INSURE

Member Type: DATA

Engine: V8

Created: 10:05 Tuesday, March 30, 1999

Observations: 21

Variables: 7

Indexes: 0

Observation Length: 64

Data Portion

The data portion of a SAS data set is a collection of data values that are arranged in a
rectangular table. In the example below, the name Jones is a data value, the weight 158.3 is a
data value, and so on.

Observations (Rows)

Rows (called observations) in the data set are collections of data values that usually relate to a
single object. The values Jones, M, 48, and 128.6 constitute a single observation in the data set
shown below.

Variable Attributes

In addition to general information about the data set, the descriptor portion contains information
about the attributes of each variable in the data set. The attribute information includes the
variable's name, type, length, format, informat, and label.

 18

When you write SAS programs, it's important to understand the attributes of the variables that
you use. For example, you might need to combine SAS data sets that contain same-named
variables. In this case, the variables must be the same type (character or numeric).

The following is a partial listing of the attribute information in the descriptor portion of the SAS
data set Clinic.Insure . Let's look at the name , type , and length variable attributes. You'll learn
about the format, informat, and label attributes later in this chapter.

Variable Type Length Format Informat Label

Policy Num 8 Policy Numbe r

Total Num 8 DOLLAR8.2 COMMA10. Total Balanc e

Name Char 20 Patient Name

Name

Each variable has a name that conforms to SAS naming conventions. Variable names follow
exactly the same rules as SAS data set names. Like data set names, variable names
� can be 1 to 32 characters long
� must begin with a letter (A–Z, either uppercase or lowercase) or an underscore (_)
� can continue with any combination of numbers, letters, or underscores.

Type

A variable's type is either character or numeric .
� Character variables, such as Name (shown below), can contain any values .
� Numeric variables, such as Policy and Total (shown below), can contain only

numeric values (the digits 0 through 9, +, -, ., and E for scientific notation).

A variable's type determines how missing values for a variable are displayed. In the following
data set, Name and Sex are character variables, and Age and Weight are numeric variables.
� For character variables such as Name, a blank represents a missing value.
� For numeric variables such as Age, a period represents a missing value.

Name Sex Age Weight

 19

Name Sex Age Weight

 M 48 128.6

Laverne M 58 158.3

Jaffe F . 115.5

Wilson M 28 170.1

Length

A variable's length (the number of bytes used to store it) is related to its type.
� Character variables can be up to 32,767 bytes long. In the example below, Name has a

length of 20 characters and uses 20 bytes of storage.
� All numeric variables have a default length of 8. Numeric values (no matter how many

digits they contain) are stored as floating-point numbers in 8 bytes of storage, unless you
specify a different length.

You've seen that each SAS variable has a name, type, and length. In addition, you can define
format , informat , and label attributes for variables. Let's look briefly at these optional
attributes— you'll learn more about them in later chapters as you need to use them.

Format

Formats are variable attributes that affect the way data values are written. SAS software offers a
variety of character, numeric, and date and time formats. You can also create and store your own
formats. To write values out using a particular form, you select the appropriate format.

For example, to display the value 1234 as $1234.00 in a report, you can use the DOLLAR8.2
format, as shown for Total below.

Usually you have to specify the maximum width (w) of the value to be written. Depending on the
particular format, you might also need to specify the number of decimal places (d) to be written.
For example, to display the value 5678 as 5,678.00 in a report, you can use the COMMA8.2
format, which specifies a width of 8 including 2 decimal places.

 20

Note You can permanently assign a format to a variable in a SAS data set, or you

can temporarily specify a format in a PROC step to determine the way the data
values appear in output.

Informat

Whereas formats write values out by using some particular form, informats read data values in
certain forms into standard SAS values. Informats determine how data values are read into a
SAS data set. You must use informats to read numeric values that contain letters or other special
characters.

For example, the numeric value $1,234.00 contains two special characters, a dollar sign ($) and a
comma (,). You can use an informat to read the value while removing the dollar sign and comma,
and then store the resulting value as a standard numeric value. For Total below, the
COMMA10. informat is specified.

Label

A variable can have a label , which consists of descriptive text up to 256 characters long. By
default, many reports identify variables by their names. You might want to display more
descriptive information about the variable by assigning a label to the variable.

For example, you can label Policy as Policy Number , Total as Total Balance , and Name as
Patient Name to display these labels in reports.

You might even want to use labels to shorten long variable names in your reports. Assigning
labels to variables is discussed in Chapter 4, Creating List Reports .

 21

This data set has four observations, each containing information about an individual. A SAS data
set can store any number of observations.

Variables (Columns)

Columns (called variables) in the data set are collections of values that describe a particular
characteristic. The values Jones, Laverne, Jaffe, and Wilson constitute the variable Name in the
data set shown below.

This data set contains four variables for each observation: Name, Sex , Age , and Weight . A
SAS data set can store thousands of variables.

Missing Values

The rectangular arrangement of rows and columns in a SAS data set implies that every variable
must exist for each observation. If a data value is unknown for a particular observation, a missing
value is recorded in the SAS data set.

 22

Summary

Text Summary

Components of SAS Programs

SAS programs consist of two types of steps: DATA steps and PROC (procedure) steps. These
two steps, alone or combined, form most SAS programs. A SAS program can consist of a DATA
step, a PROC step, or any combination of DATA and PROC steps. DATA steps typically create
or modify SAS data sets, but they can also be used to produce custom-designed reports. PROC
steps are pre- written routines that enable you to analyze and process the data in a SAS data set
and to present the data in the form of a report. PROC steps sometimes create new SAS data sets
that contain the results of the procedure.

Characteristics of SAS Programs

SAS programs consist of SAS statements . A SAS statement usually begins with a SAS keyword
and always ends with a semicolon. A DATA step begins with the keyword DATA. A PROC step
begins with the keyword PROC. SAS statements are in free format, so they can begin and end
anywhere on a line. One statement can continue over several lines, and several statements can
be on a line. Blanks or special characters separate "words" in a SAS statement.

Processing SAS Programs

When you submit a SAS program, SAS reads SAS statements and checks them for errors. When
it encounters a subsequent DATA, PROC, RUN, or QUIT statement, SAS executes the previous
step in the program.

Each time a step is executed, SAS generates a log of the processing activities and the results of
the processing. The SAS log collects messages about the processing of SAS programs and
about any errors that occur.

The results of processing can vary. Some SAS programs open an interactive window or invoke
procedures that create output in the form of a report. Other SAS programs perform tasks such as
sorting and managing data, which have no visible results other than messages in the log.

SAS Libraries

Every SAS file is stored in a SAS library , which is a collection of SAS files such as SAS data sets
and catalogs. In some operating environments, a SAS library is a physical collection of files. In
others, the files are only logically related. In the Windows and UNIX environments, a SAS library
is typically a group of SAS files in the same folder or directory.

Depending on the libref you use, you can store SAS files in temporary SAS libraries or in
permanent SAS libraries.
� Temporary SAS files that are created during the session are held in a special workspace

that is assigned the default libref Work . If you don't specify a libref when you create a file (or
if you specify Work), then the file is stored in the temporary SAS library. When you end the
session, the temporary library is deleted.

� To store a file permanently in a SAS library, you assign it a libref other than the default
Work . For example, by assigning the libref Clinic to a SAS library, you specify that files
within the library are to be stored until you delete them.

 23

Referencing SAS Files

To reference a SAS file, you use a two-level name, libref.filename . In the two-level name, libref
is the name for the SAS library that contains the file, and filename is the name of the file itself. A
period separates the libref and filename.

To reference temporary SAS files, you specify the default libref Work , a period, and the filename.
Alternatively, you can simply use a one-level name (the filename only) to reference a file in a
temporary SAS library. Referencing a SAS file in any library except Work indicates that the SAS
file is stored permanently.

SAS data set names can be 1 to 32 characters long, must begin with a letter (A–Z, either
uppercase or lowercase) or an underscore (_), and can continue with any combination of
numbers, letters, or underscores.

Overview of SAS Data Sets

For many of the data processing tasks that you perform with SAS, you access data in the form of
a SAS data set and use SAS programs to analyze, manage, or present the data. Conceptually, a
SAS data set is a file that consists of two parts: a descriptor portion and a data portion. Some
SAS data sets also contain one or more indexes, which enable SAS to locate records in the data
set more efficiently.

The descriptor portion of a SAS data set contains information about the data set.

The data portion of a SAS data set is a collection of data values that are arranged in a
rectangular table. Observations in the data set correspond to rows or data lines in a raw data file
or in an external database. An observation is the information about each object in a SAS data set.
Variables in the data set correspond to columns in a raw data file or in an external database. A
variable is the set of data values that describe a particular characteristic. If a data value is
unknown for a particular observation, a missing value is recorded in the SAS data set.

Variable Attributes

In addition to general information about the data set, the descriptor portion contains attribute
information for each variable in the data set. The attribute information includes the variable's
name, length, and type. A variable's type determines how missing values for a variable are
displayed by SAS. For character variables, a blank represents a missing value. For numeric
variables, a period represents a missing value.

Points to Remember
� Before referencing SAS files, you must assign a name (libref, or library reference) to the

library in which the files are stored (or specify that SAS is to assign the name automatically).
� You can store SAS files either temporarily or permanently.
� Variable names follow the same rules as SAS data set names. However, your site might

choose to restrict variable names to those valid in SAS Version 6, to uppercase variable
names automatically, or to remove all restrictions on variable names.

Warning After completing Chapter 1 and before continuing with Chapter 2 of this

book, you should take one of the tutorials located on the CD that
accompanies this book. These tutorials teach you how to create and
manage your SAS programs by using the programming workspace
provided in SAS and SAS Enterprise Guide.

Which tutorial you take will depend on the version of SAS that you are
running on your machine.

 24

o If you are running SAS9, take the Using the
Programming Workspace: SAS Windowing Environment
tutorial.

o If you are running SAS Enterprise Guide 3.0, take the
Using the Programming Workspace: SAS Enterprise Gui de
3.0 tutorial.

o If you are running SAS Enterprise Guide 4.1, take the
Using the Programming Workspace: SAS Enterprise Gui de
4.1 tutorial.

Now, insert the CD and print one of the following tutorials:
o Using the Programming Workspace: SAS Windowing

Environment
o Using the Programming Workspace: SAS Enterprise Guide

3.0
o Using the Programming Workspace: SAS Enterprise Guide

4.1

If you do not find the release or version of SAS that you are running at
your site, check the following companion Web site for updates:

support.sas.com/certbasetutorials

Ensure that you read the Before You Begin section on the CD for
instructions on how to create the sample data and how to use the
contents of the CD.

Quiz

Select the best answer for each question. After completing the quiz, you can check your answers
using the answer key in the appendix.

1. How many observations and variables does the data s et below contain?

Name Sex Age

Picker M 32

Fletcher 28

Romano F .

Choi M 42

a. 3 observations, 4 variables
b. 3 observations, 3 variables
c. 4 observations, 3 variables
d. can't tell because some values are missing

2. How many program steps are executed when the progra m below is processed?

data user.tables;

 infile jobs;

 input date name $ job $;

run;

proc sort data=user.tables;

 by name;

run;

 25

proc print data=user.tables;

run;
a. three
b. four
c. five
d. six

3. What type of variable is the variable AcctNum in th e data set below?

AcctNum Balance

3456_1 M

2451_2

Romano F

Choi M

a. numeric
b. character
c. can be either character or numeric
d. can't tell from the data shown

4. What type of variable is the variable Wear in the d ata set below?

Brand Wear

Acme 43

Ajax 34

Atlas .

A. numeric
B. character
C. can be either character or numeric
D. can't tell from the data shown

5. Which of the following variable names is valid?
a. 4BirthDate
b. $Cost
c. _Items_
d. Tax-Rate

6. Which of the following files is a permanent SAS fil e?
a. Sashelp.PrdSale
b. Sasuser.MySales
c. Profits.Quarter1
d. all of the above

7. In a DATA step, how can you reference a temporary S AS data set named
Forecast?

a. Forecast
b. Work.Forecast
c. Sales.Forecast (after assigning the libref Sales)
d. only a and b above

 26

8. What is the default length for the numeric variable Balance?

Name Balance

Adams 105.73

Geller 107.89

Martinez 97.45

Noble 182.50
a. 5
b. 6
c. 7
d. 8

9. How many statements does the following SAS program contain?

proc print data=new.prodsale

 label double;

 var state day price1 price2; where state='NC';

 label state='Name of State';

run;
a. three
b. four
c. five
d. six

10. What is a SAS data library?
a. a collection of SAS files, such as SAS data sets and catalogs
b. in some operating environments, a physical colle ction of SAS files
c. in some operating environments, a logically rela ted collection of SAS

files
d. all of the above

Answers

1. Correct answer: c

Rows in the data set are called observations , and columns are called variables . Missing
values don't affect the structure of the data set.

2. Correct answer: a

When it encounters a DATA, PROC, or RUN statement, SAS stops reading statements and
executes the previous step in the program. The program above contains one DATA step and
two PROC steps, for a total of three program steps.

3. Correct answer: b

It must be a character variable , because the values contain letters and underscores, which
are not valid characters for numeric values.

 27

4. Correct answer: a

It must be a numeric variable , because the missing value is indicated by a period rather
than by a blank.

5. Correct answer: c

Variable names follow the same rules as SAS data set names. They can be 1 to 32
characters long, must begin with a letter (A–Z, either uppercase or lowercase) or an
underscore, and can continue with any combination of numbers, letters, or underscores.

6. Correct answer: d

To store a file permanently in a SAS data library, you assign it a libref other than the default
Work . For example, by assigning the libref Profits to a SAS data library, you specify that files
within the library are to be stored until you delete them. Therefore, SAS files in the Sashelp
and Sasuser libraries are permanent files.

7. Correct answer: d

To reference a temporary SAS file in a DATA step or PROC step, you can specify the one-
level name of the file (for example, Forecast) or the two-level name using the libref Work (for
example, Work.Forecast).

8. Correct answer: d

The numeric variable Balance has a default length of 8. Numeric values (no matter how
many digits they contain) are stored in 8 bytes of storage unless you specify a different
length.

9. Correct answer: c

The five statements are
� PROC PRINT statement (two lines long)
� VAR statement
� WHERE statement (on the same line as the VAR statement)
� LABEL statement
� RUN statement (on the same line as the LABEL statement).

10. Correct answer: d

Every SAS file is stored in a SAS data library , which is a collection of SAS files, such as
SAS data sets and catalogs. In some operating environments, a SAS data library is a
physical collection of files. In others, the files are only logically related. In the Windows and
UNIX environments, a SAS data library is typically a group of SAS files in the same folder or
directory.

 28

Chapter 2: Referencing Files and Setting Options

Overview

Warning Have you reviewed the appropriate tutorial for your programming

environment on the companion CD-ROM? If you have not, please review
the appropriate tutorial before beginning this chapter.

Introduction

When you begin a SAS session, it's often convenient to set up your environment first. For
example, you might want to
� define libraries that contain the SAS data sets that you intend to use
� set features of your SAS listings, such as whether the date and time appear
� specify how two-digit year values should be interpreted.

Objectives

In this chapter, you learn to
� define new libraries by using programming statements
� reference SAS files to be used during your SAS session
� set system options to determine how date values are read and to control the appearance

of listing output that is created during your SAS session.

Referencing Files

SAS Libraries

In the previous chapter, you learned that SAS files are stored in SAS libraries . By default, SAS
defines several libraries for you:
� Sashelp is a permanent library that contains sample data and other files that control how

SAS works at your site. This is a read-only library.
� Sasuser is a permanent library that contains SAS files in the Profile catalog that store

your personal settings. This is also a convenient place to store your own files.
� Work is a temporary library for files that do not need to be saved from session to session.

You can also define additional libraries. In fact, often the first step in setting up your SAS session
is to define the libraries.

To define a library, you assign a library name (a libref) to it and specify a path , such as a
directory path. You will use the libref as the first part of the file's two-level name (libref.filename)
to reference the file within the library. You can use programming statements to assign library
names.

Assigning Librefs

To define libraries, you can use a LIBNAME statement . You can store the LIBNAME statement
with any SAS program so that the SAS data library is assigned each time the program is
submitted.

General form, basic LIBNAME statement:

 29

LIBNAME libref 'SAS-data-library';

where
� libref is 1 to 8 characters long, begins with a letter or underscore, and contains only

letters, numbers, or underscores.
� SAS-data-library is the name of a SAS data library in which SAS data files are stored.

The specification of the physical name of the library differs by operating environment.

The LIBNAME statement below assigns the libref Clinic to the SAS data library
D:\Users\Qtr\Reports in the Windows environment.

libname clinic 'd:\users\qtr\reports';

The table below gives examples of physical names for SAS data libraries in various operating
environments.

Environment Sample Physical Name

Windows c:\fitness\data

UNIX /users/april/fitness/sasdata

OpenVMS dua0:[april.fitness]

CMS b

z/OS (OS/390) april.fitness.sasdata

Note The code examples in this book are shown in the Windows

operating environment. If you are running SAS within another
operating environment, then the platform-specific names and
locations will look different. Otherwise, SAS programming code
will be the same across operating environments.

You can use multiple LIBNAME statements to assign as many librefs as needed.

Verifying Librefs

After assigning a libref, it is a good idea to check the Log window to verify that the libref has been
assigned successfully.
SAS Log

17 libname clinic 'd:\users\qtr\reports';

 NOTE: Libref CLINIC was successfully assigned as f ollows:

 Engine: V9

 Physical Name: d:\users\qtr\reports

How Long Librefs Remain in Effect

The LIBNAME statement is global , which means that the librefs remain in effect until you modify
them, cancel them, or end your SAS session.

 30

Therefore, the LIBNAME statement assigns the libref for the current SAS session only. Each time
you begin a SAS session, you must assign a libref to each permanent SAS data library that
contains files that you want to access in that session. (Remember that Work is the default libref
for a temporary SAS data library.)

When you end your SAS session or delete a libref, SAS no longer has access to the files in the
library. However, the contents of the library still exist on your operating system.

Specifying Two-Level Names

After you assign a libref, you specify the libref as the first element in the two-level name for a SAS
file.

For example, in order for the PRINT procedure to read Clinic.Admit , you specify the two-level
name of the file as follows:

proc print data=clinic.admit;

run;

Other Formats

You can use the LIBNAME statement to reference not only SAS files but also files that were
created with other software products, such as database management systems.

SAS can read or write these files by using the appropriate engine for that file type. Depending on
your operating environment and on the SAS/ACCESS products that you license, you can create
libraries with various engines. Each engine enables you to read a different file format, including
file formats from other software vendors.

For some file types, you need to tell SAS which engine to use. For others, SAS automatically
chooses the appropriate engine.

A SAS engine is a set of internal instructions that SAS uses for writing to and reading from files in
a SAS library.

Specifying Engines

To indicate which engine to use, you specify the engine name in the LIBNAME statement, as
shown below.

General form, LIBNAME statement for files in other formats:

 31

LIBNAME libref engine 'SAS-data-library';

where
� libref is 1 to 8 characters long, begins with a letter or underscore, and contains only

letters, numbers, or underscores.
� engine is the name of a library engine that is supported in your operating environment.
� SAS-data-library is the name of a SAS library in which SAS data files are stored. The

specification of the physical name of the library differs by operating environment.

Interface Library Engines

Interface library engines support read-only access to BMDP, OSIRIS, and SPSS files. With these
engines, the physical filename that is associated with a libref is an actual filename , not a SAS
library. This is an exception to the rules for librefs.

Engine Description

BMDP allows read-only access to BMDP files

OSIRIS allows read-only access to OSIRIS files

SPSS allows read-only access to SPSS files

For example, the LIBNAME statement below specifies the libref Rptdata and the engine SPSS
for the file G:\Myspss.dat in the Windows operating environment.

libname rptdata spss 'g:\myspss.dat';

For more information about interface library engines, see the SAS documentation for your
operating environment.

SAS/ACCESS Engines

If your site licenses SAS/ACCESS software, then you can use the LIBNAME statement to access
data that is stored in a DBMS file. The types of data that you can access depend on your
operating environment and on which SAS/ACCESS products you have licensed.

Relational Databases Nonrelational Files PC Files

ORACLE ADABAS Excel (.xls)

SYBASE IMS/DL-I Lotus (.wkn)

Informix CA-IDMS DBF

DB2 for z/OS (OS/390) SYSTEM 2000 DIF

DB2 for UNIX and PC

Oracle Rdb

ODBC

CA-OpenIngres

Viewing the Contents of SAS Libraries

 32

The CONTENTS Procedure

You've learned how to use SAS windows to view the contents of a SAS library or of a SAS file.
Alternatively, you can use the CONTENTS procedure to create SAS output that describes either
of the following:
� the contents of a library
� the descriptor information for an individual SAS data set.

General form, basic PROC CONTENTS step:

PROC CONTENTS DATA= libref._ALL_ NODETAILS;
RUN;

where
� libref is the libref that has been assigned to the SAS library.
� _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the

libref.
� NODETAILS (NODS) suppresses the printing of detailed information about each file

when you specify _ALL_. You can specify NODS only when you specify _ALL_.

Example

To view the contents of the Mylib library, submit the following PROC CONTENTS step:

proc contents data=mylib._all_ nods;

run;

The output from this step lists only the names, types, sizes, and modification dates for the SAS
files in the Mylib library.

----- Directory -----

Libref: MYLIB

Engine: V8

Physical Name: C:\WINNT\Profiles\Personal\My SAS Files\V8

File Name: C:\WINNT\Profiles\Personal\My SAS Files\V8

Name Memtype File Size Last Modified

1 ADMIT DATA 9216 23JUN2000:16:30:38

2 ADMITJUNE DATA 9216 23JUN2000:16:30:38

3 COMPANY DATA 5120 23JUN2000:16:30:38

4 CREDIT DATA 5120 23JUN2000:16:30:38

5 CUSTDET1 DATA 33792 04MAY2000:13:45:49

6 DIABETES DATA 9216 23JUN2000:16:30:38

7 DMDATA CATALOG 21504 04MAY2000:13:59:19

 33

To view the descriptor information for the Mylib.Admit data set, you can submit the following
PROC CONTENTS step:

proc contents data=mylib.admit;

run;

The output from this step lists information for Mylib.Admit , including an alphabetic list of the
variables in the data set.

Data Set Name MYLIB.ADMIT Observations 21

Member Type DATA Variables 9

Engine V8 Indexes 0

Created 15:05 Thursday, July 17, 2003 Observation
Length

64

Last Modified 15:05 Thursday, July 17, 2003 Deleted
Observations

0

Protection Compressed N
O

Data Set Type Sorted N
O

Label

Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set
Pages

1

First Data Page 1

Max Obs per Page 127

Obs in First Data Page 21

Number of Data Set
Repairs

0

File Name C:\WINNT\Profiles\Personal\My SAS Files\V8\admit.sas7bdat

Release Created 8.0202M0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format

8 ActLevel Char 4

4 Age Num 8

5 Date Num 8

9 Fee Num 8 7.2

 34

Alphabetic List of Variables and Attributes

Variable Type Len Format

6 Height Num 8

1 ID Char 4

2 Name Char 14

3 Sex Char 1

7 Weight Num 8

The DATASETS Procedure

In addition to PROC CONTENTS, you can also use PROC DATASETS with the CONTENTS
statement to view the contents of a SAS library or a SAS data set.

General form, PROC DATASETS step with CONTENTS stat ement:

PROC DATASETS;
 CONTENTS DATA= libref ._ALL_ NODETAILS;
QUIT;

where
� CONTENTS describes the contents of one or more SAS data sets and prints the

directory of the SAS data library.
� libref is the libref that has been assigned to the SAS data library.
� _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the

libref.
� NODETAILS (NODS) suppresses the printing of detailed information about each file

when you specify _ALL_. You can specify NODS only when you specify _ALL_.

For example, the following PROC steps produce essentially the same output (with minor
formatting differences):

proc datasets;

 contents data=sasuser._all_ nods;

quit;

proc contents data=sasuser._all_ nods;

run;

The major difference between the CONTENTS procedure and the CONTENTS statement in
PROC DATASETS is the default for libref in the DATA= option. For PROC CONTENTS, the
default is either Work or User . For the CONTENTS statement, the default is the libref of the
procedure input library. Notice also that PROC DATASETS is an interactive procedure that
requires a QUIT statement rather than a RUN statement.

Note In addition to the CONTENTS statement, PROC DATASETS also uses several

other statements. These statements enable you to perform tasks that PROC
CONTENTS does not perform. For more information about PROC DATASETS,
see the SAS documentation for your operating environment.

 35

Viewing Descriptor Information for a SAS Data Set

As with PROC CONTENTS, you can also use PROC DATASETS to display the descriptor
information for a specific SAS data set.

By default, PROC CONTENTS and PROC DATASETS list variables alphabetically . To list
variable names in the order of their logical position (or creation order) in the data set, you can
specify the VARNUM option in PROC CONTENTS or in the CONTENTS statement in PROC
DATASETS.

For example, either of these programs creates output that includes the list of variables shown
below:

proc datasets;

 contents data=sasuser.admit varnum;

quit;

proc contents data=sasuser.admit varnum;

run;

Variables in Creation Order

Variable Type Len Format

1 ID Char 4

2 Name Char 14

3 Sex Char 1

4 Age Num 8

5 Date Num 8

6 Height Num 8

7 Weight Num 8

8 ActLevel Char 4

9 Fee Num 8 7.2

Setting SAS System Options

SAS Output

Next, let's consider the appearance and format of your SAS output. You can specify result
formats to create your output as
� an HTML document
� a listing (traditional SAS output)
� both of the above.

You can create HTML output by using programming statements on any SAS platform. In addition,
in desktop operating environments, you can use windows to specify result formats. You can learn
more about how to create HTML output in Chapter 10, Producing HTML Output .

 36

If you create your procedure output as a SAS listing, you can also control the appearance of your
output by setting system options such as
� line size (the maximum width of the log and output)
� page size (the number of lines per printed page of output)
� the display of page numbers
� the display of date and time.

Note The above options do not affect the appearance of HTML output.

All SAS system options have default settings that are used unless you specify otherwise. For
example, page numbers are automatically displayed (unless your site modifies this default).

To modify system options, you submit an OPTIONS statement. You can place an OPTIONS
statement anywhere in a SAS program to change the settings from that point onward. However, it
is good programming practice to place OPTIONS statements outside of DATA or PROC steps so
that your programs are easier to read and debug.

Note Because the OPTIONS statement is global , the settings remain in effect until

you modify them, or until you end your SAS session.

General form, OPTIONS statement:

OPTIONS options;

where options specifies one or more system options to be changed. The available system options
depend on your host operating system.

Example: NUMBER | NONUMBER and DATE | NODATE Option s

By default, page numbers and dates appear with output. The following OPTIONS statement
suppresses the printing of both page numbers and the date and time in listing output.

options nonumber nodate;

In the following example, page numbers and the current date are not displayed in the PROC
PRINT output. Page numbers are not displayed in the PROC FREQ output, either, but the date
does appear at the top of the page that contains the PROC FREQ report.

options nonumber nodate;

proc print data=clinic.admit;

 var id sex age height weight;

 where age>=30;

 37

run;

options date;

proc freq data=clinic.diabetes;

 where fastgluc>=300;

 tables sex;

run;

 The SAS System

 Obs ID Sex Age Height Weight

 2 2462 F 34 66 152

 3 2501 F 31 61 123

 4 2523 F 43 63 137

 5 2539 M 51 71 158

 7 2552 F 32 67 151

 8 2555 M 35 70 173

 9 2563 M 34 73 154

 10 2568 F 49 64 172

 11 2571 F 44 66 140

 13 2574 M 30 69 147

 14 2575 F 40 69 163

 15 2578 M 47 72 173

 16 2579 M 60 71 191

 17 2584 F 43 65 123

 20 2589 F 41 67 141

 21 2595 M 54 71 183

 The SAS System

 15:19 Thursday, September 23, 1999

 Cumulative Cumulati ve

 Sex Frequency Percent Frequency Percent

--

 F 2 25.0 2 25.0

 M 6 75.0 8 100.0

 38

Example: PAGENO= Option

If you print page numbers, you can specify the beginning page number for your report by using
the PAGENO= option. If you don't specify the PAGENO= option, output is numbered sequentially
throughout your SAS session, starting with page 1.

In the following example, the output pages are numbered sequentially throughout the SAS
session, beginning with number 3.

options nodate pageno=3;

proc print data=hrd.funddrv;

run;

 The SAS System 3

 Obs LastName Qtr1 Qtr2 Qtr3 Qtr4

 1 ADAMS 18 18 20 20

 2 ALEXANDER 15 18 15 10

 3 APPLE 25 25 25 25

 4 ARTHUR 10 25 20 30

 5 AVERY 15 15 15 15

 6 BAREFOOT 20 20 20 20

 7 BAUCOM 25 20 20 30

 8 BLAIR 10 10 5 10

 9 BLALOCK 5 10 10 15

 10 BOSTIC 20 25 30 25

 11 BRADLEY 12 16 14 18

Example: PAGESIZE= Option

The PAGESIZE= option specifies how many lines each page of output contains. In the following
example, each page of the output that the PRINT procedure produces contains 15 lines (including
those used by the title, date, and so on).

options pageno=1 pagesize=15;

proc print data=clinic.admit;

run;

 The SAS System 1

 15:19 Thursday, September 23, 199 9

 Obs ID Name Sex Age Date

 1 2458 Murray, W M 27 1

 39

 2 2462 Almers, C F 34 3

 3 2501 Bonaventure, T F 31 17

 4 2523 Johnson, R F 43 31

 5 2539 LaMance, K M 51 4

 6 2544 Jones, M M 29 6

 7 2552 Reberson, P F 32 9

 8 2555 King, E M 35 13

 9 2563 Pitts, D M 34 22

 10 2568 Eberhardt, S F 49 27

Example: LINESIZE= Option

The LINESIZE= option specifies the width of the print line for your procedure output and log.
Observations that do not fit within the line size continue on a different line.

In the following example, the observations are longer than 64 characters, so the observations
continue on a subsequent page.

options pageno=1 linesize=64;

proc print data=flights.europe;

run;

 The SAS System 1

 15:19 Thursday, Sep tember 23, 1999

 Obs Flight Date Depart Orig Dest Miles Mail Freight Boarded

 1 821 04MAR99 9:31 LGA LON 3442 403 209 167

 2 271 04MAR99 11:40 LGA PAR 3856 492 308 146

 3 271 05MAR99 12:19 LGA PAR 3857 366 498 177

 4 821 06MAR99 14:56 LGA LON 3442 345 243 167

 5 821 07MAR99 13:17 LGA LON 3635 248 307 215

 6 271 07MAR99 9:31 LGA PAR 3442 353 205 155

 7 821 08MAR99 11:40 LGA LON 3856 391 395 186

 8 271 08MAR99 12:19 LGA PAR 3857 366 279 152

 9 821 09MAR99 14:56 LGA LON 3442 219 368 203

 10 271 09MAR99 13:17 LGA PAR 3635 357 282 159

 The SAS System 2

 15:19 Thursday, September 23, 1999

 40

 Obs Transfer NonRev Deplaned Capacity MonthDay Rev enue

 1 17 7 222 250 1 150 634

 2 8 3 163 250 1 156 804

 3 15 5 227 250 1 190 098

 4 13 4 222 250 1 150 634

 5 14 6 158 250 1 193 930

 6 18 7 172 250 2 166 470

 7 8 1 114 250 2 167 772

 8 7 4 187 250 2 163 248

 9 6 3 210 250 2 183 106

 10 15 4 191 250 2 170 766

Handling Two-Digit Year Values: Year 2000 Complianc e

If you use two-digit year values in your data lines, external files, or programming statements,
you should consider another important system option, the YEARCUTOFF= option. This option
specifies which 100-year span is used to interpret two-digit year values.

All versions of SAS represent dates correctly from 1582 A.D. to 20,000 A.D. (Leap years, century,
and fourth-century adjustments are made automatically. Leap seconds are ignored, and SAS
does not adjust for daylight saving time.) However, you should be aware of the YEARCUTOFF=
value to ensure that you are properly interpreting two-digit years in data lines.

As with other system options, you specify the YEARCUTOFF= option in the OPTIONS statement:

options yearcutoff=1925;

How the YEARCUTOFF= Option Works

When a two-digit year value is read, SAS interprets it based on a 100-year span that starts with
the YEARCUTOFF= value. The default value of YEARCUTOFF= is 1920.

Date Expression Interpreted As

12/07/41 12/07/1941

18Dec15 18Dec2015

04/15/30 04/15/1930

15Apr95 15Apr1995

 41

However, you can override the default and change the value of YEARCUTOFF= to the first year
of another 100-year span. For example, if you specify YEARCUTOFF=1950, then the 100-year
span will be from 1950 to 2049.

options yearcutoff=1950;

Using YEARCUTOFF=1950, dates are interpreted as shown below:

Date Expression Interpreted As

12/07/41 12/07/2041

18Dec15 18Dec2015

04/15/30 04/15/2030

15Apr95 15Apr1995

How Four-Digit Year Values Are Handled

Remember, the value of the YEARCUTOFF= system option affects only two-digit year values . A
date value that contains a four-digit year value will be interpreted correctly even if it does not fall
within the 100-year span set by the YEARCUTOFF= system option.

Note You can learn more about reading date values in Chapter 19, Reading Date

and Time Values .

Using System Options to Specify Observations

You've seen how to use SAS system options to change the appearance of output and interpret
two- digit year values. You can also use the OBS= and FIRSTOBS= system options to specify
the observations to process from SAS data sets.

You can specify either or both of these options as needed. That is, you can use
� OBS= to specify the last observation to be processed
� FIRSTOBS= to specify the first observation to be processed
� FIRSTOBS= and OBS= together to specify a range of observations to be processed.

General form, FIRSTOBS= and OBS= options in an OPTI ONS statement:

OPTIONS FIRSTOBS=n;
OPTIONS OBS=n;

where n is a positive integer. For FIRSTOBS=, n specifies the number of the first observation to
process. For OBS=, n specifies the number of the last observation to process. By default,
FIRSTOBS=1. The default value for OBS= is MAX, which is the largest signed, four-byte integer
that is representable in your operating environment.

Warning Each of these options applies to every input data set that is used in a

program or a SAS process.

 42

Example: FIRSTOBS= and OBS= Options

The data set Sasuser.Heart contains 20 observations. If you specify FIRSTOBS=10, SAS reads
the 10th observation of the data set first and reads through the last observation (for a total of 11
observations).

options firstobs=10;

proc print data=sasuser.heart;

run;

The PROC PRINT step produces the following output:

Ob
s

Patie
nt

Se
x

Surviv
e

Shock Arteri
al

Hea
rt

Cardia
c

Urinar
y

10 509 2 SURV OTHER 79 84 256 90

11 742 1 DIED HYPOVOL 100 54 135 0

12 609 2 DIED NONSHOC
K

93 101 260 90

13 318 2 DIED OTHER 72 81 410 405

14 412 1 SURV BACTER 61 87 296 44

15 601 1 DIED BACTER 84 101 260 377

16 402 1 SURV CARDIO 88 137 312 75

17 98 2 SURV CARDIO 84 87 260 377

18 4 1 SURV HYPOVOL 81 149 406 200

19 50 2 SURV HYPOVOL 72 111 332 12

20 2 2 DIED OTHER 101 114 424 97

If you specify OBS=10 instead, SAS reads through the 10th observation, in this case for a total of
10 observations. (Notice that FIRSTOBS= has been reset to the default value.)

options firstobs=1 obs=10;

proc print data=sasuser.heart;

run;

Now the PROC PRINT step produces this output:

Ob
s

Patie
nt

Se
x

Surviv
e

Shock Arteri
al

Hea
rt

Cardia
c

Urinar
y

1 203 1 SURV NONSHOC
K

88 95 66 110

2 54 1 DIED HYPOVOL 83 183 95 0

3 664 2 SURV CARDIO 72 111 332 12

4 210 2 DIED BACTER 74 97 369 0

5 101 2 DIED NEURO 80 130 291 0

 43

Ob
s

Patie
nt

Se
x

Surviv
e

Shock Arteri
al

Hea
rt

Cardia
c

Urinar
y

6 102 2 SURV OTHER 87 107 471 65

7 529 1 DIED CARDIO 103 106 217 15

8 524 2 DIED CARDIO 145 99 156 10

9 426 1 SURV OTHER 68 77 410 75

10 509 2 SURV OTHER 79 84 256 90

Combining FIRSTOBS= and OBS= processes observations in the middle of the data set. For
example, the following program processes only observations 10 through 15, for a total of 6
observations:

options firstobs=10 obs=15;

proc print data=sasuser.heart;

run;

Here is the output:

Ob
s

Patie
nt

Se
x

Surviv
e

Shock Arteri
al

Hea
rt

Cardia
c

Urinar
y

10 509 2 SURV OTHER 79 84 256 90

11 742 1 DIED HYPOVOL 100 54 135 0

12 609 2 DIED NONSHOC
K

93 101 260 90

13 318 2 DIED OTHER 72 81 410 405

14 412 1 SURV BACTER 61 87 296 44

15 601 1 DIED BACTER 84 101 260 377

To reset the number of the last observation to process, you can specify OBS=MAX in the
OPTIONS statement.

options obs=max;

This instructs any subsequent SAS programs in the SAS session to process through the last
observation in the data set being read.

Using FIRSTOBS= and OBS= for Specific Data Sets

As you saw above, using the FIRSTOBS= or OBS= system options determines the first or last
observation, respectively, that is read for all steps for the duration of your current SAS session or
until you change the setting. However, you might want to
� override these options for a given data set
� apply these options to a specific data set only.

To affect any single file, you can use FIRSTOBS= or OBS= as data set options instead of as
system options. You specify the data set option in parentheses immediately following the input
data set name.

 44

Note A FIRSTOBS= or OBS= specification from a data set option overrides the

corresponding FIRSTOBS= or OBS= system option.

Example: FIRSTOBS= and OBS as Data Set Options

As shown in the last example, this program processes only observations 10 through 15, for a total
of 6 observations:

options firstobs=10 obs=15;

proc print data=sasuser.heart;

run;

You can create the same output by specifying FIRSTOBS= and OBS= as data set options. The
data set options override the system options for this instance only.

options firstobs=10 obs=15;

proc print data=sasuser.heart(firstobs=4 obs=20);

run;

To specify FIRSTOBS= or OBS= for this program only, you could omit the OPTIONS statement
altogether and simply use the data set options.

Viewing System Options

The OPTIONS Procedure

You can use the OPTIONS procedure to display the current setting of one or all SAS system
options. The results are displayed in the log.

General form, OPTIONS procedure:

PROC OPTIONS <option(s)>;
RUN;

where option(s) specifies how SAS system options are displayed.

Example

To list all SAS system options, their settings, and a description, submit the following code:

proc options;

run;

The log lists the options and their settings:
Partial Log

1 proc options;:

2 run;

SAS (r) Proprietary Software Release 9 TS2M0

Portable Options:

 45

 APPLETLOC=C:\Program Files\SAS Institute\Shared F iles\applets\9

 Location of Java applets

ARMAGENT= ARM Agent to use to collect ARM records

ARMLOC=ARMLOC.LOG Identify location where ARM recor ds are to be

 written

ARMSUBSYS=(ARM_NONE)

 Enable/Disable ARMing of SAS su bsystems

NOASYNCHIO Do not enable asynchronous inpu t/output

 AUTOSAVELOC= Identifies t he location

 where program editor contents a re auto saved

To list the value of one particular system option, use the OPTION= option in the PROC OPTIONS
statement as shown below:

proc options option=yearcutoff;

run;

Note If a SAS system option uses an equal sign, such as YEARCUTOFF=, you do

not include the equal sign when specifying the option to OPTION=.

The log shows that the setting of the YEARCUTOFF= option is 1920.

3 proc options option=yearcutoff;

4 run;

 SAS (r) Proprietary Software Release 9 TS2M0

 YEARCUTOFF=1920 Cutoff year for DATE and DATETIM E informats

 and functions

Additional System Options

When you set up your SAS session, you can set SAS system options that affect listing output,
information written to the SAS log, and much more. Here are some additional system options that
you are likely to use with SAS procedures:

Option Description

FORMCHAR='formatting-
characters'

specifies the formatting characters for your output device.
Formatting characters are used to construct the outlines of
tables, and dividers for various procedures, such as the FREQ
and TABULATE procedures. If you do not specify formatting
characters as an option in the procedure, then the default
specifications given in the FORMCHAR= system option are
used.

FORMDLIM='delimiting-
character'

specifies a character that is used to delimit page breaks in SAS
System output. Normally, the delimiting character is null. When
the delimiting character is null, a new physical page starts
whenever a page break occurs.

LABEL | NOLABEL permits SAS procedures to temporarily replace variable names

 46

Option Description

with descriptive labels. The LABEL system option must be in
effect before the LABEL option of any procedure can be used.
If NOLABEL is specified, then the LABEL option of a procedure
is ignored. The default setting is LABEL.

OBS=n specifies the observation from a data set (or the record from a
raw data file) that SAS reads last. You can also use the OBS=
system option to control the analysis of SAS data sets in PROC
steps. n specifies the number of the last observation to
process.

SOURCE | NOSOURCE controls whether SAS source statements are written to the SAS
log. NOSOURCE specifies not to write SAS source statements
to the SAS log. The default setting is SOURCE.

You can also use programming statements to control the result format of each item of procedure
output individually. For more information, see Chapter 10, Producing HTML Output .

Summary

Text Summary

Referencing Files in SAS Libraries

To reference a SAS file, you assign a libref (library reference) to the SAS library in which the file
is stored. Then you use the libref as the first part of the two-level name (libref.filename) for the
file.

To reference a SAS library, you can submit a LIBNAME statement . You can store the LIBNAME
statement with any SAS program to reference the SAS library automatically when you submit the
program. The LIBNAME statement assigns the libref for the current SAS session only. You must
assign a libref each time you begin a SAS session in order to access SAS files that are stored in
a permanent SAS library. (Work is the default libref for a temporary SAS library.)

You can also use the LIBNAME statement to reference data in files that were created with other
software products, such as database management systems. SAS can write to or read from the
files by using the appropriate engine for that file type. For some file types, you need to tell SAS
which engine to use. For others, SAS automatically chooses the appropriate engine.

Viewing the Contents of SAS Libraries

To list the contents of a library, use the CONTENTS procedure . Append a period and the _ALL_
option to the libref to get a listing of all files in the library. Add the NODS option to suppress
detailed information about the files. As an alternative to PROC CONTENTS, you can use PROC
DATASETS.

Setting SAS System Options

For your listing output, you can also control the appearance of your output by setting system
options such as line size, page size, the display of page numbers, and the display of the date and
time. (These options do not affect the appearance of HTML output.)

 47

All SAS system options have default settings that are used unless you specify otherwise. For
example, page numbers are automatically displayed (unless your site modifies this default). To
modify system options, you submit an OPTIONS statement . You can place an OPTIONS
statement anywhere in a SAS program to change the current settings. Because the OPTIONS
statement is global, the settings remain in effect until you modify them or until you end your SAS
session.

If you use two-digit year values in your SAS data lines, you must be aware of the
YEARCUTOFF= option to ensure that you are properly interpreting two-digit years in your SAS
program. This option specifies which 100-year span is used to interpret two-digit year values.

Viewing SAS System Options

You can use the OPTIONS procedure to display the value of one or more SAS system options.
The output of this procedure is included in the log.

Points to Remember
� LIBNAME and OPTIONS statements remain in effect for the current SAS session only.
� When you work with date values,

o check the default value of the YEARCUTOFF= system option and change it if
necessary

o specify the proper informat for reading a date value or the proper format for
writing a date value

o specify the correct field width so that the entire date value is read or written.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. If you submit the following program, how does the o utput look?

options pagesize=55 nonumber;

proc tabulate data=clinic.admit;

 class actlevel;

 var age height weight;

 table actlevel,(age height weight)*mean;

run;

options linesize=80;

 proc means data=clinic.heart min max maxdec=1;

 var arterial heart cardiac urinary;

 class survive sex;

run;
a. The PROC MEANS output has a print line width of 80 characters, but the

PROC TABULATE output has no print line width.
b. The PROC TABULATE output has no page numbers, bu t the PROC

MEANS output has page numbers.
c. Each page of output from both PROC steps is 55 l ines long and has no

page numbers, and the PROC MEANS output has a print line width of 80
characters.

d. The date does not appear on output from either P ROC step.

 48

2. In order for the date values 05May1955 and 04Mar204 6 to be read correctly,
what value must the YEARCUTOFF= option have?

a. a value between 1947 and 1954, inclusive
b. 1955 or higher
c. 1946 or higher
d. any value

3. When you specify an engine for a library, you are a lways specifying
a. the file format for files that are stored in the library.
b. the version of SAS that you are using.
c. access to other software vendors' files.
d. instructions for creating temporary SAS files.

4. Which statement prints a summary of all the files s tored in the library named
Area51?

a. proc contents data=area51._all_ nods;
b. proc contents data=area51 _all_ nods;
c. proc contents data=area51 _all_ noobs;
d. proc contents data=area51 _all_.nods;

5. The following PROC PRINT output was created immedia tely after PROC
TABULATE output. Which SAS system options were spec ified when the report
was created?

 1

 10:03 Friday, March 17, 2000

 Act

Obs ID Height Weight Level Fee

1 2458 72 168 HIGH 85.20

2 2462 66 152 HIGH 124.80

3 2501 61 123 LOW 149.75

4 2523 63 137 MOD 149.75

5 2539 71 158 LOW 124.80

6 2544 76 193 HIGH 124.80

7 2552 67 151 MOD 149.75

8 2555 70 173 MOD 149.75

9 2563 73 154 LOW 124.80
a. OBS=, DATE, and NONUMBER
b. PAGENO=1 and DATE
c. NUMBER and DATE only
d. none of the above

6. Which of the following programs correctly reference s a SAS data set named
SalesAnalysis that is stored in a permanent SAS lib rary?

a. data saleslibrary.salesanalysis;

b. set mydata.quarter1sales;

 49

c. if sales>100000;

d. run;

e. data mysales.totals;

f. set sales_99.salesanalysis;

g. if totalsales>50000;

h. run;

i. proc print data=salesanalysis.quarter1;

j. var sales salesrep month;

k. run;

l. proc freq data=1999data.salesanalysis;

m. tables quarter*sales;

n. run;

7. Which time span is used to interpret two-digit year values if the YEARCUTOFF=
option is set to 1950?

a. 1950-2049
b. 1950-2050
c. 1949-2050
d. 1950-2000

8. Assuming you are using SAS code and not special SAS windows, which one of
the following statements is false?

a. LIBNAME statements can be stored with a SAS program to reference the
SAS library automatically when you submit the progr am.

b. When you delete a libref, SAS no longer has acce ss to the files in the
library. However, the contents of the library still exist on your operating
system.

c. Librefs can last from one SAS session to another .
d. You can access files that were created with othe r vendors' software by

submitting a LIBNAME statement.

9. What does the following statement do?

libname osiris spss 'c:\myfiles\sasdata\data';
a. defines a library called Spss using the OSIRIS e ngine
b. defines a library called Osiris using the SPSS e ngine
c. defines two libraries called Osiris and Spss usi ng the default engine
d. defines the default library using the OSIRIS and SPSS engines

10. What does the following OPTIONS statement do?

options pagesize=15 nodate;
a. suppresses the date and limits the page size of the log
b. suppresses the date and limits the vertical page size for text output
c. suppresses the date and limits the vertical page size for text and HTML

output
d. suppresses the date and limits the horizontal pa ge size for text output

 50

Answers

1. Correct: answer: c

When you specify a system option, it remains in effect until you change the option or end
your SAS session, so both PROC steps generate output that is printed 55 lines per page with
no page numbers. If you don't specify a system option, SAS uses the default value for that
system option.

2. Correct answer: d

As long as you specify an informat with the correct field width for reading the entire date
value, the YEARCUTOFF= option doesn't affect date values that have four-digit years.

3. Correct answer: a

A SAS engine is a set of internal instructions that SAS uses for writing to and reading from
files in a SAS library. Each engine specifies the file format for files that are stored in the
library, which in turn enables SAS to access files with a particular format. Some engines
access SAS files, and other engines support access to other vendors' files.

4. Correct answer: a

To print a summary of library contents with the CONTENTS procedure, use a period to
append the _ALL_ option to the libref. Adding the NODS option suppresses detailed
information about the files.

5. Correct answer: b

Clearly, the DATE and PAGENO= options are specified. Because the page number on the
output is 1, even though PROC TABULATE output was just produced. If you don't specify
PAGENO=, all output in the Output window is numbered sequentially throughout your SAS
session.

6. Correct answer: b

Librefs must be 1 to 8 characters long, must begin with a letter or underscore, and can
contain only letters, numbers, or underscores. After you assign a libref, you specify it as the
first element in the two-level name for a SAS file.

7. Correct answer: a

The YEARCUTOFF= option specifies which 100-year span is used to interpret two-digit year
values. The default value of YEARCUTOFF= is 1920. However, you can override the default
and change the value of YEARCUTOFF= to the first year of another 100-year span. If you
specify YEARCUTOFF=1950, then the 100-year span will be from 1950 to 2049.

8. Correct answer: c

The LIBNAME statement is global, which means that librefs remain in effect until you modify
them, cancel them, or end your SAS session. Therefore, the LIBNAME statement assigns the
libref for the current SAS session only. You must assign a libref before accessing SAS files
that are stored in a permanent SAS data library.

 51

9. Correct answer: b

In the LIBNAME statement, you specify the library name before the engine name. Both are
followed by the path.

10. Correct answer: b

These options affect the format of listing output only. NODATE suppresses the date and
PAGESIZE= determines the number of rows to print on the page.

 52

Chapter 3: Editing and Debugging SAS Programs

Overview

Introduction

Now that you're familiar with the basics, you can learn how to correct errors in your programs and
resolve common problems effectively.

Objectives

In this chapter, you learn to
� enhance the readability of your SAS programs
� interpret error messages in the SAS log
� correct errors
� resolve common problems.

SAS Program Layout

Before discussing how to edit and debug programs, let's review the characteristics of SAS
statements and look at enhancing the readability of your SAS programs.

Remember that SAS programs consist of SAS statements.

SAS statements.....

Although you can write SAS statements in almost any format, a consistent layout enhances
readability and helps you understand the program's purpose. It's a good idea to
� begin DATA and PROC steps in column one
� indent statements within a step

 53

� begin RUN statements in column one
� include a RUN statement after every DATA step or PROC step.

data work.bankacct;

 infile records;

 input Name $ 1-10 AccountType $ 12-20

 Deposit 22-25 Withdrawal 27-30;

run;

proc print data=work.bankacct;

run;

proc means mean;

 var deposit withdrawal;

run;

Interpreting Error Messages

Error Types

So far, the programs that you've seen in this book have been error free, but programming errors
do occur. SAS can detect several types of errors. The most common are
� syntax errors that occur when program statements do not conform to the rules of the

SAS language
� data errors that occur when some data values are not appropriate for the SAS

statements that are specified in a program.

This chapter focuses on identifying and correcting syntax errors .

Syntax Errors

When you submit a program, SAS scans each step for syntax errors, then processes the step (if
no syntax errors are found). SAS then goes to the next step and repeats the process. Syntax
errors, such as misspelled words, generally cause SAS to stop processing the step in which the
error occurred.

You already know that information is written to the SAS log while a SAS program is executing.
When a program that contains an error is submitted, messages regarding the problem also
appear in the SAS log. When a syntax error is detected, the SAS log
� displays the word ERROR
� identifies the possible location of the error
� gives an explanation of the error.

Example

The program below contains a syntax error. The DATA step copies the SAS data set
Clinic.Admit into a new data set named Clinic .Admitfee . The PROC step should print the
values for the variables ID , Name, Actlevel , and Fee in the new data set. However, print is
misspelled in the PROC PRINT statement.

data clinic.admitfee;

 set clinic.admit;

 54

run;

proc prin data=clinic.admitfee;

 var id name actlevel fee;

run;

When the program is submitted, messages in the SAS log indicate that the procedure PRIN was
not found and that SAS stopped processing the PRINT step due to errors. No output is produced
by the PRINT procedure, because the second step fails to execute.

Warning Problems with your statements or data might not be evident when you look

at results. Therefore, it's important to review the messages in the log each
time you submit a SAS program.

Correcting Errors

To modify programs that contain errors, you can edit them in the Editor window. You can correct
simple errors, such as the spelling error in the following program, by typing over the incorrect text,
deleting text, or inserting text.

data clinic.admitfee;

 set clinic.admit;

run;

proc prin data=clinic.admitfee;

 var id name actlevel fee;

run;

In the program below, the missing t has been inserted into the PRINT keyword that is specified in
the PROC PRINT statement.

data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee;

 var id name actlevel fee;

run;

Info Some problems are relatively easy to diagnose and correct. But sometimes you

might not know right away how to correct errors. The online Help provides
information about individual procedures as well as help that is specific to your
operating environment. From the Help menu, you can also select SAS on the
Web for links to Technical Support and Frequently Asked Questions, if you have
Internet access.

 55

Resubmitting a Revised Program

After correcting your program, you can submit it again.

SAS Enterprise Guide When you submit the code, SAS Enterprise Guide prompts

you to choose whether or not you want to replace the
previous results. If you choose not to replace the results,
SAS Enterprise Guide makes a copy of the code and a new
code item is added to the project.

Previously, because there was an error in the PRINT procedure, the code that contained the error
did not produce output. This time, the PRINT procedure executes and produces output.

Obs ID Name ActLevel Fee

1 2458 Murray, W HIGH 85.20

2 2462 Almers, C HIGH 124.80

3 2501 Bonaventure, T LOW 149.75

4 2523 Johnson, R MOD 149.75

5 2539 LaMance, K LOW 124.80

6 2544 Jones, M HIGH 124.80

7 2552 Reberson, P MOD 149.75

8 2555 King, E MOD 149.75

9 2563 Pitts, D LOW 124.80

10 2568 Eberhardt, S LOW 124.80

11 2571 Nunnelly, A HIGH 149.75

12 2572 Oberon, M LOW 85.20

13 2574 Peterson, V MOD 149.75

14 2575 Quigley, M HIGH 124.80

15 2578 Cameron, L MOD 124.80

16 2579 Underwood, K LOW 149.75

17 2584 Takahashi, Y MOD 124.80

18 2586 Derber, B HIGH 85.20

19 2588 Ivan, H LOW 85.20

20 2589 Wilcox, E HIGH 149.75

21 2595 Warren, C MOD 149.75

Remember to check the SAS log again to verify that your program ran correctly.
SAS Log

54 data clinic.: admitfee;

55 set clinic.admit;

 56

56 run;

NOTE: The data set CLINIC.ADMITFEE has

 21 observations and 9 variables.

NOTE: DATA statement used:

 real time 0.09 seconds

 cpu time 0.03 seconds

57 proc print data=clinic.admitfee;

58 var id name actlevel fee;

59 run;

NOTE: PROCEDURE PRINT used;

 real time 1.78 seconds

 cpu time 0.03 seconds

Resolving Common Problems

In addition to correcting spelling mistakes, you might need to resolve several other types of
common syntax errors. These errors include
� omitting semicolons
� leaving quotation marks unbalanced
� specifying invalid options.

Another common problem is omitting a RUN statement at the end of a program. Although this is
not technically an error, it can produce unexpected results. For the sake of convenience, we'll
consider it together with syntax errors.

The table below lists these problems and their symptoms.

Problem Symptom

missing RUN statement "PROC (or DATA) step running" at top of active window

missing semicolon log message indicating an error in a statement that seems to
be valid

unbalanced quotation
marks

log message indicating that a text string enclosed in quotation
marks has become too long or that a statement is ambiguous

invalid option log message indicating that an option is invalid or not
recognized

Missing RUN Statement

 57

Each step in a SAS program is compiled and executed independently from every other step. As a
step is compiled, SAS recognizes the end of the current step when it encounters
� a DATA or PROC statement, which indicates the beginning of a new step
� a RUN or QUIT statement, which indicates the end of the current step.

When the program below is submitted, the DATA step executes, but the PROC step does not.
The PROC step does not execute because there is no following DATA or PROC step to indicate
the beginning of a new step, nor is there a following RUN statement to indicate the end of the
step.

data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee;

 var id name actlevel fee;

SAS Windowing Environment If you submit this code using the SAS windowing

environment, the PRINT procedure waits before
executing because there is nothing to indicate the
end of the PROC step. A "PROC PRINT running"
message appears at the top of the active window.

SAS Enterprise Guide SAS Enterprise Guide automatically adds a RUN statement

at the end of code when it is submitted to SAS. So although
you need to learn to add a RUN statement to the end of your
steps, you will not encounter this problem if you forget to
add a RUN statement when using SAS Enterprise Guide.

Resolving the Problem

To correct the error, submit a RUN statement to complete the PROC step.

run;

Missing Semicolon

One of the most common errors is the omission of a semicolon at the end of a statement. The
program below is missing a semicolon at the end of the PROC PRINT statement.

data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee

 var id name actlevel fee;

run;

When you omit a semicolon, SAS reads the statement that lacks the semicolon, plus the following
statement, as one long statement. The SAS log then lists errors that relate to the combined
statement, not the actual mistake (the missing semicolon).
SAS Log

1832 proc print data: =clinic.admitfee

1833 var id name actlevel fee;

 58

 22

 76

ERROR 22-322:Syntax error, expecting one of the fol lowing:

 ;, (, DATA, DOUBLE, HEADING, LABEL,

 N, NOOBS, OBS, ROUND, ROWS, SPLIT, UNI FORM, WIDTH.

ERROR 76-322:Syntax error, statement will be ignore d.

1834 run;

NOTE: The SAS System stopped processing this step

 because of errors.

NOTE: PROCEDURE PRINT used:

 real time 0.35 seconds

 cpu time 0.03 seconds

Resolving the Problem

To correct the error, do the following:
1. Find the statement that lacks a semicolon. You can usually locate the statement that

lacks the semicolon by looking at the underscored keywords in the error message and
working backwards.

2. Add a semicolon in the appropriate location.
3. Resubmit the corrected program.
4. Check the SAS log again to make sure there are no other errors.

Unbalanced Quotation Marks

Some syntax errors, such as the missing quotation mark after HIGH in the program below, cause
SAS to misinterpret the statements in your program.

data clinic.admitfee;

 set clinic.admit;

 where actlevel= ‘HIGH;

run;

proc print data=clinic.admitfee;

 var id name actlevel fee;

run;

When you have unbalanced quotation marks, SAS is often unable to detect the end of the
statement in which the error occurs. When the program above is submitted, SAS is unable to
resolve the DATA step, and a "DATA STEP running" message appears at the top of the active
window.

In addition, when unbalanced quotation marks appear in a program that contains TITLE or
FOOTNOTE statements, there is sometimes a warning in the SAS log which indicates that
� a text string enclosed in quotation marks has become too long

 59

� a statement that contains quotation marks (such as a TITLE or FOOTNOTE statement) is
ambiguous due to invalid options or unquoted text.

SAS Log (PROC PRINT Running)

93 proc print data=clinic.admitfee;

94 var id name actlevel fee;

95 title 'Patient Billing;

96 title2 'January 1998';

WARNING: The TITLE statement is ambiguous due to

 invalid options or unquoted text.

97 run;

Simply adding a quotation mark and resubmitting your program usually does not solve the
problem. SAS still considers the quotation marks to be unbalanced.

Warning If you do not resolve this problem when it occurs, it is likely that any

subsequent programs that you submit in the current SAS session will
generate errors.

Resolving the Problem

SAS Enterprise Guide When you submit a program with unbalanced quotation

marks, you might not receive an error message. This is
because SAS Enterprise Guide automatically submits an
ending quotation mark for you. However, you will not get
valid results.

Because there might be no visual indicator in the Project
window that there is an error in your program, you should
learn to detect this syntax error before you submit your
program. The Code Editor window uses color coding to help
you recognize errors.

SAS Windowing Environment In the SAS windowing environment, you must cancel

the program before you recall, correct, and resubmit
the code. To submit a line of SAS code that cancels
the program, complete the following steps:

1. Submit an asterisk followed by a quotation
mark, a semicolon, and a RUN statement.

*'; run;
2. Delete the line that contains the asterisk

followed by the quotation mark, the semicolon,
and the RUN statement.

3. Insert the missing quotation mark in the
appropriate place in your program.

4. Submit the corrected program.
SAS Log

98 *';: run;

NOTE: There were 7 observations read from the data set

 CLINIC.ADMITFEE.

 60

NOTE: PROCEDURE PRINT used (Total process time):

 real time 31.38 seconds

 cpu time 1.21 seconds

99 proc print data=clinic.admitfee;

99 var id name actlevel fee;

100 title 'Patient Billing';

101 title2 'January 1998';

102 run;

NOTE: There were 7 observations read from the data set

 CLINIC.ADMITFEE.

NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.16 seconds

 cpu time 0.15 seconds

Invalid Option

An invalid option error occurs when you specify an option that is not valid in a particular
statement. In the program below, the KEYLABEL option is not valid when used with the PROC
PRINT statement.

data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee keylabel;

 label actlevel='Activity Level';

run;

When a SAS statement that contains an invalid option is submitted, a message appears in the
SAS log indicating that there is a syntax error. The message lists the options that are valid in the
statement.
SAS Log

12 proc print data: =clinic.admitfee keylabel;

 22 200

ERROR 22-322: Syntax error, expecting one of the f ollowing: ;,

 (,

 N, NOOBS, OBS, ROUND, ROWS, SPLIT, S TYLE,

 UNIFORM,

ERROR 200-322: The symbol is not recognized and wi ll be ignored.

13 label actlevel='Activity Level';

 61

14 run;

NOTE: The SAS System stopped processing this step

 because of errors.

NOTE: PROCEDURE PRINT used:

 real time 0.23 seconds

 cpu time 0.04 seconds

Resolving the Problem

To correct the error:
1. Remove or replace the invalid option, and check your statement syntax as needed.
2. Resubmit the corrected program.
3. Check the SAS log again to make sure there are no other errors.

Additional Features

Comments in SAS Programs

You can insert comments into a SAS program to document the purpose of the program, to
explain segments of the program, or to describe the steps in a complex program or calculation. A
comment statement begins and ends with a comment symbol. There are two forms of comment
statements:

*text;

or

/*text*/

SAS ignores text in comments during processing.

The following program shows some of the ways comments can be used to describe a SAS
program.

 /* Read national sales data for vans */

 /* from an external raw data file */

data perm.vansales;

 infile vandata;

 input @1 Region $9.

 @13 Quarter 1. /* Values are 1, 2, 3, or 4 */

 @16 TotalSales comma11.;

 /* Print the entire data set */

proc print data=perm.vansales;

run;

SAS System Options

 62

SAS includes several system options that enable you to control error handling and SAS log
messages. The table shown below contains brief descriptions of some of these options. You can
use the OPTIONS statement to specify these options.

Option Description

ERRORS=n Specifies the maximum number of observations for which complete
data error messages are printed.

FMTERR |
NOFMTERR

Controls whether SAS generates an error message when a format of
a variable cannot be found. NOFMTERR results in a warning instead
of an error. FMTERR is the default.

SOURCE |
NOSOURCE

Controls whether SAS writes source statements to the SAS log.
SOURCE is the default

Summary

Text Summary

SAS Program Layout

SAS programs consist of SAS statements. Although you can write SAS statements in almost any
format, a consistent layout enhances readability and enables you to understand the program's
purpose.

Interpreting Error Messages

When a SAS program that contains errors is submitted, error messages appear in the SAS log.
SAS can detect several types of errors, including syntax and data errors. This chapter focuses on
identifying and resolving common syntax errors.

Correcting Errors

To modify a program that contains syntax errors, you can correct the errors in the Editor window
and then resubmit the revised program. You can delete any error-free steps from a revised
program before resubmitting it.

Detecting and Resolving Common Problems

You might need to resolve several types of common problems: missing RUN statements, missing
semicolons, unbalanced quotation marks, and invalid options.

Points to Remember
� It's a good idea to begin DATA steps, PROC steps, and RUN statements on the left and

to indent statements within a step.
� End each step with a RUN statement.
� Review the messages in the SAS log each time you submit a SAS program.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

 63

1. As you write and edit SAS programs, it’s a good idea to
a. begin DATA and PROC steps in column one.
b. indent statements within a step.
c. begin RUN statements in column one.
d. all of the above.

2. What usually happens when a syntax error is detected?
a. SAS continues processing the step.
b. SAS continues to process the step, and the SAS log displays messages about

the error.
c. SAS stops processing the step in which the error occurred, and the SAS log

displays messages about the error.
d. SAS stops processing the step in which the error occurred, and the Output

window displays messages about the error.

3. A syntax error occurs when
a. some data values are not appropriate for the SAS statements that are

specified in a program.
b. the form of the elements in a SAS statement is correct, but the elements are

not valid for that usage.
c. program statements do not conform to the rules of the SAS language.
d. none of the above.

4. How can you tell whether you have specified an invalid option in a SAS program?
a. A log message indicates an error in a statement that seems to be valid.
b. A log message indicates that an option is not valid or not recognized.
c. The message "PROC running" or "DATA step running" appears at the top of

the active window.
d. You can't tell until you view the output from the program.

5. Which of the following programs contain a syntax error?

a. proc sort data=sasuser.mysales;

b. by region;

c. run;

d. dat sasuser.mysales;

e. set mydata.sales99;

f. run;

g. proc print data=sasuser.mysales label;

h. label region='Sales Region';

i. run;
j. none of the above.

6. What does the following log indicate about your program?

proc print data=sasuser.cargo99

 var origin dest cargorev;

 22

 76

ERROR 22-322: Syntax error, expecting one of the

 64

following:

 ;, (, DATA, DOUBLE, HEADING, LABEL,

 N, NOOBS, OBS, ROUND, ROWS, SPLIT, ST YLE,

 UNIFORM, WIDTH.

ERROR 76-322: Syntax error, statement will be ignor ed.

11 run;

a. SAS identifies a syntax error at the position of the VAR statement.
b. SAS is reading VAR as an option in the PROC PRINT statement.
c. SAS has stopped processing the program because of errors.
d. all of the above

Answers

1. Correct answer: d

Although you can write SAS statements in almost any format, a consistent layout enhances
readability and enables you to understand the program's purpose. It's a good idea to begin
DATA and PROC steps in column one, to indent statements within a step, to begin RUN
statements in column one, and to include a RUN statement after every DATA step or PROC
step.

2. Correct answer: c

Syntax errors generally cause SAS to stop processing the step in which the error occurred.
When a program that contains an error is submitted, messages regarding the problem also
appear in the SAS log. When a syntax error is detected, the SAS log displays the word
ERROR, identifies the possible location of the error, and gives an explanation of the error.

3. Correct answer: c

Syntax errors are common types of errors. Some SAS system options, features of the Editor
window, and the DATA step debugger can help you identify syntax errors. Other types of
errors include data errors, semantic errors, and execution-time errors.

4. Correct answer: b

When you submit a SAS statement that contains an invalid option, a log message notifies you
that the option is not valid or not recognized. You should recall the program, remove or replace
the invalid option, check your statement syntax as needed, and resubmit the corrected
program.

5. Correct answer: b

The DATA step contains a misspelled keyword (dat instead of data). However, this is such a
common (and easily interpretable) error that SAS produces only a warning message, not an
error.

6. Correct answer: d

Because there is a missing semicolon at the end of the PROC PRINT statement, SAS

 65

interprets VAR as an option in PROC PRINT and finds a syntax error at that location. SAS
stops processing programs when it encounters a syntax error.

 66

Chapter 4: Creating List Reports

Overview

Introduction

To list the information in a data set, you can create a report with a PROC PRINT step. Then you
can enhance the report with additional statements and options to create reports like those shown
below.

Objectives

In this chapter you learn to
� specify SAS data sets to print
� select variables and observations to print
� sort data by the values of one or more variables
� specify column totals for numeric variables
� double-space SAS listing output
� add titles and footnotes to procedure output
� assign descriptive labels to variables
� apply formats to the values of variables.

Types of Reports

Basic Report

You can easily list the contents of a SAS data set by using a simple program like the one shown
below.

libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

run;

 67

Ob
s

ID Name Se
x

Ag
e

Dat
e

Heig
ht

Weig
ht

ActLev
el

Fee

1 245
8

Murray, W M 27 1 72 168 HIGH 85.2
0

2 246
2

Almers, C F 34 3 66 152 HIGH 124.
80

3 250
1

Bonaventu
re, T

F 31 17 61 123 LOW 149.
75

4 252
3

Johnson,
R

F 43 31 63 137 MOD 149.
75

5 253
9

LaMance,
K

M 51 4 71 158 LOW 124.
80

6 254
4

Jones, M M 29 6 76 193 HIGH 124.
80

7 255
2

Reberson,
P

F 32 9 67 151 MOD 149.
75

8 255
5

King, E M 35 13 70 173 MOD 149.
75

9 256
3

Pitts, D M 34 22 73 154 LOW 124.
80

10 256
8

Eberhardt,
S

F 49 27 64 172 LOW 124.
80

11 257
1

Nunnelly,
A

F 44 19 66 140 HIGH 149.
75

12 257
2

Oberon, M F 28 17 62 118 LOW 85.2
0

13 257
4

Peterson,
V

M 30 6 69 147 MOD 149.
75

14 257
5

Quigley, M F 40 8 69 163 HIGH 124.
80

15 257
8

Cameron,
L

M 47 5 72 173 MOD 124.
80

16 257
9

Underwoo
d, K

M 60 22 71 191 LOW 149.
75

17 258
4

Takahashi,
Y

F 43 29 65 123 MOD 124.
80

18 258
6

Derber, B M 25 23 75 188 HIGH 85.2
0

19 258
8

Ivan, H F 22 20 63 139 LOW 85.2
0

20 258 Wilcox, E F 41 16 67 141 HIGH 149.

 68

Ob
s

ID Name Se
x

Ag
e

Dat
e

Heig
ht

Weig
ht

ActLev
el

Fee

9 75

21 259
5

Warren, C M 54 7 71 183 MOD 149.
75

Column Totals

You can produce column totals for numeric variables within your report.

libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

 sum fee;

run;

Ob
s

ID Name Se
x

Ag
e

Dat
e

Heig
ht

Weig
ht

ActLev
el

Fee

1 245
8

Murray, W M 27 1 72 168 HIGH 85.20

2 246
2

Almers, C F 34 3 66 152 HIGH 124.8
0

3 250
1

Bonaventu
re, T

F 31 17 61 123 LOW 149.7
5

4 252
3

Johnson,
R

F 43 31 63 137 MOD 149.7
5

5 253
9

LaMance,
K

M 51 4 71 158 LOW 124.8
0

6 254
4

Jones, M M 29 6 76 193 HIGH 124.8
0

7 255
2

Reberson,
P

F 32 9 67 151 MOD 149.7
5

8 255
5

King, E M 35 13 70 173 MOD 149.7
5

9 256
3

Pitts, D M 34 22 73 154 LOW 124.8
0

10 256
8

Eberhardt,
S

F 49 27 64 172 LOW 124.8
0

11 257
1

Nunnelly,
A

F 44 19 66 140 HIGH 149.7
5

12 257
2

Oberon, M F 28 17 62 118 LOW 85.20

13 257
4

Peterson,
V

M 30 6 69 147 MOD 149.7
5

 69

Ob
s

ID Name Se
x

Ag
e

Dat
e

Heig
ht

Weig
ht

ActLev
el

Fee

14 257
5

Quigley, M F 40 8 69 163 HIGH 124.8
0

15 257
8

Cameron,
L

M 47 5 72 173 MOD 124.8
0

16 257
9

Underwoo
d, K

M 60 22 71 191 LOW 149.7
5

17 258
4

Takahashi,
Y

F 43 29 65 123 MOD 124.8
0

18 258
6

Derber, B M 25 23 75 188 HIGH 85.20

19 258
8

Ivan, H F 22 20 63 139 LOW 85.20

20 258
9

Wilcox, E F 41 16 67 141 HIGH 149.7
5

21 259
5

Warren, C M 54 7 71 183 MOD 149.7
5

 2686.
95

Sorting and Labels

You can sort data by the values of one or more variables and replace variable names with
descriptive labels.

libname clinic 'your-SAS-data-library';

proc sort data=clinic.admit out=admit;

 by age;

run;

proc print data=admit label;

 var age height weight fee;

 label fee='Admission Fee';

run;

Obs Age Height Weight Admission
Fee

1 22 63 139 85.20

2 25 75 188 85.20

3 27 72 168 85.20

4 28 62 118 85.20

5 29 76 193 124.80

 70

Obs Age Height Weight Admission
Fee

6 30 69 147 149.75

7 31 61 123 149.75

8 32 67 151 149.75

9 34 66 152 124.80

10 34 73 154 124.80

11 35 70 173 149.75

12 40 69 163 124.80

13 41 67 141 149.75

14 43 63 137 149.75

15 43 65 123 124.80

16 44 66 140 149.75

17 47 72 173 124.80

18 49 64 172 124.80

19 51 71 158 124.80

20 54 71 183 149.75

21 60 71 191 149.75

Selected Observations and Variables

You can choose the observations and variables that appear in your report. In addition, you can
remove the default Obs column that displays observation numbers.

libname clinic 'your-SAS-data-library';

proc print data=clinic.admit noobs;

 var age height weight fee;

 where age>30;

run;

Age Height Weight Fee

34 66 152 124.80

31 61 123 149.75

43 63 137 149.75

51 71 158 124.80

32 67 151 149.75

35 70 173 149.75

 71

Age Height Weight Fee

34 73 154 124.80

49 64 172 124.80

44 66 140 149.75

40 69 163 124.80

47 72 173 124.80

60 71 191 149.75

43 65 123 124.80

41 67 141 149.75

54 71 183 149.75

Creating a Basic Report

To produce a simple list report, you first reference the library in which your SAS data set is
stored. If you want, you can also set SAS system options to control the appearance of your
reports. Then you submit a basic PROC PRINT step.

General form, basic PROC PRINT step:

PROC PRINT <DATA=SAS-data-set>;
RUN;

where SAS-data-set is the name of the SAS data set to be printed.

In the program below, the PROC PRINT statement invokes the PRINT procedure and specifies
the data set Therapy in the SAS data library to which the libref Patients has been assigned.

libname patients 'c:\records\patients';

proc print data=patients.therapy;

run;

Notice the layout of the resulting report. By default,
� all observations and variables in the data set are printed
� a column for observation numbers appears on the far left
� variables appear in the order in which they occur in the data set.

Obs Date AerClass WalkJogRun Swim

1 JAN1999 56 78 14

2 FEB1999 32 109 19

3 MAR1999 35 106 22

4 APR1999 47 115 24

5 MAY1999 55 121 31

 72

Obs Date AerClass WalkJogRun Swim

6 JUN1999 61 114 67

7 JUL1999 67 102 72

8 AUG1999 64 76 77

9 SEP1999 78 77 54

10 OCT1999 81 62 47

11 NOV1999 84 31 52

12 DEC1999 2 44 55

13 JAN2000 37 91 83

14 FEB2000 41 102 27

15 MAR2000 52 98 19

16 APR2000 61 118 22

17 MAY2000 49 88 29

18 JUN2000 24 101 54

19 JUL2000 45 91 69

20 AUG2000 63 65 53

21 SEP2000 60 49 68

22 OCT2000 78 70 41

23 NOV2000 82 44 58

24 DEC2000 93 57 47

Note Be sure to specify the equal sign in the DATA= option in SAS procedures. If

you omit the equal sign, your program produces an error similar to the
following in the SAS log.

SAS Log

1 proc print data: patients.therapy;

 73

 2 run;

 ERROR 73-322: Expecting an =.

 NOTE: The SAS System stopped processing this step

 because of errors.

Selecting Observations

 73

By default, a PROC PRINT step lists all the variables in a data set. You can select variables and
control the order in which they appear by using a VAR statement in your PROC PRINT step.

General form, VAR statement:

VAR variable(s);

where variable(s) is one or more variable names, separated by blanks.

For example, the following VAR statement specifies that only the variables Age, Height ,
Weight , and Fee be printed, in that order:

proc print data=clinic.admit;

 var age height weight fee;

run;

The procedure output from the PROC PRINT step with the VAR statement lists only the values
for the variables Age, Height , Weight , and Fee.

Obs Age Height Weight Fee

1 27 72 168 85.20

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

6 29 76 193 124.80

7 32 67 151 149.75

8 35 70 173 149.75

9 34 73 154 124.80

10 49 64 172 124.80

11 44 66 140 149.75

12 28 62 118 85.20

13 30 69 147 149.75

14 40 69 163 124.80

15 47 72 173 124.80

16 60 71 191 149.75

17 43 65 123 124.80

18 25 75 188 85.20

19 22 63 139 85.20

 74

Obs Age Height Weight Fee

20 41 67 141 149.75

21 54 71 183 149.75

In addition to selecting variables, you can control the default Obs column that PROC PRINT
displays to list observation numbers. If you prefer, you can choose not to display observation
numbers.

Obs Age Height Weight Fee

1 27 72 168 85.20

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

Removing the OBS Column

To remove the Obs column, specify the NOOBS option in the PROC PRINT statement.

 proc print data=work.example noobs;

 var age height weight fee;

 run;

Age Height Weight Fee

27 72 168 85.20

34 66 152 124.80

31 61 123 149.75

43 63 137 149.75

51 71 158 124.80

Identifying Observations

You've learned how to remove the Obs column altogether. As another alternative, you can use
one or more variables to replace the Obs column in the output.

To specify which variables should replace the Obs column, use the ID statement. This technique
is particularly useful when observations are too long to print on one line.

General form, ID statement:

ID variable(s);

where variable(s) specifies one or more variables to print instead of the observation number at
the beginning of each row of the report.

 75

Example

To replace the Obs column and identify observations based on an employee's ID number and last
name, you can submit the following program.

proc print data=sales.reps;

 id idnum lastname;

run;

This is HTML output from the program:

ID
nu
m

LastNa
me

First
Nam
e

City S
t
a
t
e

S
e
x

Job
Co
de

Sal
ary

Birt
h

Hir
ed

Home
Phon
e

12
69

CASTO
N

FRA
NKLI
N

STAM
FORD

C
T

M NA1 416
90.
00

06M
AY6

0

01D
EC8

0

203/7
81-
3335

19
35

FERNA
NDEZ

KAT
RINA

BRIDG
EPOR
T

C
T

 NA2 510
81.
00

31M
AR4

2

19O
CT6

9

203/6
75-
2962

14
17

NEWKI
RK

WILL
IAM

PATE
RSON

N
J

, NA2 522
70.
00

30J
UN5

2

10M
AR7

7

201/7
32-
6611

18
39

NORRI
S

DIAN
E

NEW
YORK

N
Y

F NA1 434
33.
00

02D
EC5

8

06J
UL8

1

718/3
84-
1767

11
11

RHOD
ES

JER
EMY

PRINC
ETON

N
J

M NA1 405
86.
00

17J
UL6

1

03N
OV8

0

201/8
12-
1837

13
52

RIVER
S

SIM
ON

NEW
YORK

N
Y

M NA2 537
9.8

0

05D
EC4

8

19O
CT7

4

718/3
83-
3345

13
32

STEPH
ENSO
N

ADA
M

BRIDG
EPOR
T

C
T

M NA1 421
78.
00

20S
EP5

8

07J
UN7

9

203/6
75-
1497

14
43

WELLS AGN
ES

STAM
FORD

C
T

F NA1 422
.74

20N
OV5

6

01S
EP7

9

203/7
81-
5546

No
te

In listing output, the IDnum and LastName columns are repeated for each
observation that is printed on more than one line.

 IDnum LastName FirstName City State Sex JobCode

 1269 CASTON FRANKLIN STAMFORD CT M NA1

 76

 1935 FERNANDEZ KATRINA BRIDGEPO CT NA2

 1417 NEWKIRK WILLIAM PATERSON NJ , NA2

 1839 NORRIS DIANE NEW YORK NY F NA1

 1111 RHODES JEREMY PRINCETO NJ M NA1

 1352 RIVERS SIMON NEW YORK NY M NA2

 1332 STEPHENS ADAM BRIDGEPO CT M NA1

 1443 WELLS AGNES STAMFORD CT F NA1

 IDnum LastName Salary Birth Hired H omePhone

 1269 CASTON 41690.00 06MAY60 01DEC80 20 3/781-3335

 1935 FERNANDEZ 51081.00 31MAR42 19OCT69 20 3/675-2962

 1417 NEWKIRK 52270.00 30JUN52 10MAR77 20 1/732-6611

 1839 NORRIS 43433.00 02DEC58 06JUL81 71 8/384-1767

 1111 RHODES 40586.00 17JUL61 03NOV80 20 1/812-1837

 1352 RIVERS 5379.80 05DEC48 19OCT74 71 8/383-3345

 1332 STEPHENS 42178.00 20SEP58 07JUN79 20 3/675-1497

 1443 WELLS 422.74 20NOV56 01SEP79 20 3/781-5546

If a variable in the ID statement also appears in the VAR statement, the output contains two
columns for that variable. In the example below, the variable IDnum appears twice.

proc print data=sales.reps;

 id idnum lastname;

 var idnum sex jobcode salary;

run;

IDnum LastName IDnum Sex JobCode Salary

1269 CASTON 1269 M NA1 41690.00

1935 FERNANDEZ 1935 NA2 51081.00

1417 NEWKIRK 1417 , NA2 52270.00

1839 NORRIS 1839 F NA1 43433.00

1111 RHODES 1111 M NA1 40586.00

1352 RIVERS 1352 M NA2 5379.80

1332 STEPHENSON 1332 M NA1 42178.00

1443 WELLS 1443 F NA1 422.74

Selecting Observations

 77

By default, a PROC PRINT step lists all the observations in a data set. You can control which
observations are printed by adding a WHERE statement to your PROC PRINT step. There can
be only one WHERE statement in a step.

General form, WHERE statement:

WHERE where-expression;

where where-expression specifies a condition for selecting observations. The where-expression
can be any valid SAS expression.

For example, the following WHERE statement selects only observations for which the value of
Age is greater than 30:

proc print data=clinic.admit;

 var age height weight fee;

 where age>30;

run;

Here is the procedure output from the PROC PRINT step with the WHERE statement:

Obs Age Height Weight Fee

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

7 32 67 151 149.75

8 35 70 173 149.75

9 34 73 154 124.80

10 49 64 172 124.80

11 44 66 140 149.75

14 40 69 163 124.80

15 47 72 173 124.80

16 60 71 191 149.75

17 43 65 123 124.80

20 41 67 141 149.75

21 54 71 183 149.75

 78

Specifying WHERE Expressions

In the WHERE statement you can specify any variable in the SAS data set, not just the variables
that are specified in the VAR statement. The WHERE statement works for both character and
numeric variables. To specify a condition based on the value of a character variable, you must
� enclose the value in quotation marks
� write the value with lowercase and uppercase letters exactly as it appears in the data set.

You use the following comparison operators to express a condition in the WHERE statement:

Symbol Meaning Example

= or eq equal to where name='Jones, C.';

^= or ne not equal to where temp ne 212;

> or gt greater than where income>20000;

< or lt less than where partno lt "BG05";

>= or ge greater than or equal to where id>='1543';

<= or le less than or equal to where pulse le 85;

Note You can learn more about valid SAS expressions in Chapter

5, Creating SAS Data Sets from Raw Data .

Using the CONTAINS Operator

The CONTAINS operator selects observations that include the specified substring. The
mnemonic equivalent for the CONTAINS operator is ?. You can use either the CONTAINS
keyword or the mnemonic equivalent in your code, as shown below.

 where firstname CONTAINS 'Jon';

 where firstname ? 'Jon';

Specifying Compound WHERE Expressions

You can also use WHERE statements to select observations that meet multiple conditions. To
link a sequence of expressions into compound expressions, you use logical operators , including
the following:

Operator Meaning

AND or & and, both. If both expressions are true, then the compound expression is
true.

OR or | or, either. If either expression is true, then the compound expression is true.

Examples of WHERE Statements
� Here are some examples of WHERE statements that use logical operators:

where age<=55 and pulse>75;

where area='A' or region='S';

where ID>1050 and state='NC';
� When you test for multiple values of the same variable , you specify the variable name

in each expression:

 79

where actlevel='LOW' or actlevel='MOD';

where fee=124.80 or fee=178.20;
� You can use the IN operator as a convenient alternative:

where actlevel in ('LOW','MOD');

where fee in (124.80,178.20);
� To control the way compound expressions are evaluated, you can use parentheses

(expressions in parentheses are evaluated first):

where (age<=55 and pulse>75) or area='A';

where age<=55 and (pulse>75 or area='A');

Sorting Data

By default, PROC PRINT lists observations in the order in which they appear in your data set. To
sort your report based on values of a variable, you must use PROC SORT to sort your data
before using the PRINT procedure to create reports from the data.

The SORT procedure
� rearranges the observations in a SAS data set
� creates a new SAS data set that contains the rearranged observations
� replaces the original SAS data set by default
� can sort on multiple variables
� can sort in ascending or descending order
� does not generate printed output
� treats missing values as the smallest possible values.

General form, simple PROC SORT step:

PROC SORT DATA=SAS-data-set <OUT=SAS-data-set>;
 BY <DESCENDING> BY-variable(s);
RUN;

where
� the DATA= option specifies the data set to be read.
� the OUT= option specifies the output data set that contains the data in sorted order.
� BY-variable(s) in the required BY statement specifies one or more variables whose

values are used to sort the data.
� the DESCENDING option in the BY statement sorts observations in descending order. If

you have more than one variable in the BY statement, DESCENDING applies only to the
variable that immediately follows it.

Warning If you don't use the OUT= option, PROC SORT permanently sorts the

data set that is specified in the DATA= option. If you need your data to
be sorted to produce output for only one SAS session, then you should
specify a temporary SAS data set as the output data set.

Example

In the following program, the PROC SORT step sorts the permanent SAS data set Clinic.Admit
by the values of the variable Age within the values of the variable Weight and creates the
temporary SAS data set Wgtadmit . Then the PROC PRINT step prints the Wgtadmit data set.

 80

 proc sort data=clinic.admit out=work.wgtadmit;

 by weight age;

 run;

 proc print data=work.wgtadmit;

 var age height weight fee;

 where age>30;

 run;

The report displays observations in ascending order of age within weight.

Obs Age Height Weight Fee

2 31 61 123 149.75

3 43 65 123 124.80

4 43 63 137 149.75

6 44 66 140 149.75

7 41 67 141 149.75

9 32 67 151 149.75

10 34 66 152 124.80

11 34 73 154 124.80

12 51 71 158 124.80

13 40 69 163 124.80

15 49 64 172 124.80

16 35 70 173 149.75

17 47 72 173 124.80

18 54 71 183 149.75

20 60 71 191 149.75

Adding the DESCENDING option to the BY statement sorts observations in ascending order of
age within descending order of weight. Notice that DESCENDING applies only to the variable
Weight .

proc sort data=clinic.admit out=work.wgtadmit;

 by descending weight age;

run;

proc print data=work.wgtadmit;

 var age height weight fee;

 where age>30;

run;

Obs Age Height Weight Fee

2 60 71 191 149.75

 81

Obs Age Height Weight Fee

4 54 71 183 149.75

5 35 70 173 149.75

6 47 72 173 124.80

7 49 64 172 124.80

9 40 69 163 124.80

10 51 71 158 124.80

11 34 73 154 124.80

12 34 66 152 124.80

13 32 67 151 149.75

15 41 67 141 149.75

16 44 66 140 149.75

18 43 63 137 149.75

19 31 61 123 149.75

20 43 65 123 124.80

Generating Column Totals

To produce column totals for numeric variables, you can list the variables to be summed in a
SUM statement in your PROC PRINT step.

General form, SUM statement:

SUM variable(s);

where variable(s) is one or more variable names, separated by blanks. You do not need to name
the variables in a VAR statement if you specify them in the SUM statement.

The SUM statement in the following PROC PRINT step requests column totals for the variable
BalanceDue :

 proc print data=clinic.insure;

 var name policy balancedue;

 where pctinsured < 100;

 sum balancedue;

 run;

Column totals appear at the end of the report in the same format as the values of the variables.

Obs Name Policy BalanceDue

 82

Obs Name Policy BalanceDue

 2 Almers, C 95824 156.05

 3 Bonaventure, T 87795 9.48

 4 Johnson, R 39022 61.04

 5 LaMance, K 63265 43.68

 6 Jones, M 92478 52.42

 7 Reberson, P 25530 207.41

 8 King, E 18744 27.19

 9 Pitts, D 60976 310.82

10 Eberhardt, S 81589 173.17

13 Peterson, V 75986 228.00

14 Quigley, M 97048 99.01

15 Cameron, L 42351 111.41

17 Takahashi, Y 54219 186.58

18 Derber, B 74653 236.11

20 Wilcox, E 94034 212.20

21 Warren, C 20347 164.44

 2279.01

Requesting Subtotals

You might also want to subtotal numeric variables. To produce subtotals, add both a SUM
statement and a BY statement to your PROC PRINT step.

General form, BY statement in the PRINT procedure:

BY <DESCENDING> BY-variable-1
<...<DESCENDING> <BY-variable-n>>
<NOTSORTED>;

where
� BY-variable specifies a variable that the procedure uses to form BY groups. You can

specify more than one variable, separated by blanks.
� the DESCENDING option specifies that the data set is to be sorted in descending order

by the variable that immediately follows.
� the NOTSORTED option specifies that the observations are not necessarily sorted in

alphabetic or numeric order. If observations that have the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY group.

Warning If you do not use the NOTSORTED option in the BY statement, the

observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately.

 83

Example

The SUM statement in the following PROC PRINT step requests column totals for the variable
Fee, and the BY statement produces a subtotal for each value of ActLevel .

proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

proc print data=work.activity;

 var age height weight fee;

 where age>30;

 sum fee;

 by actlevel;

run;

In the output, the BY variable name and value appear before each BY group. The BY variable
name and the subtotal appear at the end of each BY group.

ActLevel=HIGH

Obs Age Height Weight Fee

2 34 66 152 124.80

4 44 66 140 149.75

5 40 69 163 124.80

7 41 67 141 149.75

ActLevel 549.10

ActLevel=LOW

Obs Age Height Weight Fee

8 31 61 123 149.75

9 51 71 158 124.80

10 34 73 154 124.80

11 49 64 172 124.80

13 60 71 191 149.75

ActLevel 673.90

ActLevel=MOD

Obs Age Height Weight Fee

15 43 63 137 149.75

16 32 67 151 149.75

17 35 70 173 149.75

 84

ActLevel=MOD

Obs Age Height Weight Fee

19 47 72 173 124.80

20 43 65 123 124.80

21 54 71 183 149.75

ActLevel 848.60

 2071.60

Creating a Customized Layout with BY Groups and ID Variables

In the previous example, you might have noticed the redundant information for the BY variable.
For example, in the partial PROC PRINT output below, the BY variable ActLevel is identified
both before the BY group and for the subtotal.

ActLevel=HIGH

Obs Age Height Weight Fee

2 34 66 152 124.80

4 44 66 140 149.75

5 40 69 163 124.80

7 41 67 141 149.75

ActLevel 549.10

To show the BY variable heading only once, you can use an ID statement and a BY statement
together with the SUM statement. When an ID statement specifies the same variable as the BY
statement,
� the Obs column is suppressed
� the ID/BY variable is printed in the left-most column
� each ID/BY value is printed only at the start of each BY group and on the line that

contains that group's subtotal.

Example

The ID, BY, and SUM statements work together to produce the output shown below. The ID
variable is listed only once for each BY group and once for each sum. The BY lines are
suppressed. Instead, the value of the ID variable, ActLevel , identifies each BY group.

proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

proc print data=work.activity;

 var age height weight fee;

 where age>30;

 sum fee;

 by actlevel;

 85

 id actlevel;

run;

ActLevel Age Height Weight Fee

HIGH 34 66 152 124.80

 44 66 140 149.75

 40 69 163 124.80

 41 67 141 149.75

HIGH 549.10

LOW 31 61 123 149.75

 51 71 158 124.80

 34 73 154 124.80

 49 64 172 124.80

 60 71 191 149.75

LOW 673.90

MOD 43 63 137 149.75

 32 67 151 149.75

 35 70 173 149.75

 47 72 173 124.80

 43 65 123 124.80

 54 71 183 149.75

MOD 848.60

 2071.60

Requesting Subtotals on Separate Pages

As another enhancement to your PROC PRINT report, you can request that each BY group be
printed on a separate page by using the PAGEBY statement .

General form, PAGEBY statement:

PAGEBY BY-variable;

where BY-variable identifies a variable that appears in the BY statement in the PROC PRINT
step. PROC PRINT begins printing a new page if the value of any of the variables in the BY
statement changes.

Warning The variable that is specified in the PAGEBY statement must also be

specified in the BY statement in the PROC PRINT step.

 86

Example

The PAGEBY statement in the program below prints BY groups for the variable ActLevel
separately. The BY groups appear on separate pages in the output.

proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

proc print data=work.activity;

 var age height weight fee;

 where age>30;

 sum fee;

 by actlevel;

 id actlevel;

 pageby actlevel;

run;

ActLevel Age Height Weight Fee

HIGH 34 66 152 124.80

 44 66 140 149.75

 40 69 163 124.80

 41 67 141 149.75

HIGH 549.10

ActLevel Age Height Weight Fee

LOW 31 61 123 149.75

 51 71 158 124.80

 34 73 154 124.80

 49 64 172 124.80

 60 71 191 149.75

LOW 673.90

ActLevel Age Height Weight Fee

MOD 43 63 137 149.75

 32 67 151 149.75

 35 70 173 149.75

 47 72 173 124.80

 43 65 123 124.80

 54 71 183 149.75

MOD 848.60

 87

ActLevel Age Height Weight Fee

 2071.60

Double-Spacing Listing Output

If you are generating SAS listing output, one way to control the layout is to double-space it. To
double-space, specify the DOUBLE option in the PROC PRINT statement.

proc print data=clinic.stress double;

 var resthr maxhr rechr;

 where tolerance='I';

run;

Note Double-spacing does not apply to HTML output.

SAS Output

 OBS RestHR MaxHR RecHR

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

 14 74 152 113

 15 75 158 108

 20 78 189 138

SAS
Enter
prise
Guide

To generate SAS listing output, you must select Text output on the Results tab of
the Options window.

Specifying Titles and Footnotes

Now you've learned how to structure your PROC PRINT output. However, you might also want to
make your reports easy to interpret by
� adding titles and footnotes
� replacing variable names with descriptive labels
� formatting variable values.

 88

Although this chapter focuses on PROC PRINT, you can apply these enhancements to most SAS
procedure output.

TITLE and FOOTNOTE Statements

To make your report more meaningful and self-explanatory, you can specify up to 10 titles with
procedure output by using TITLE statements before the PROC step. Likewise, you can specify
up to 10 footnotes by using FOOTNOTE statements before the PROC step.

Note Because TITLE and FOOTNOTE statements are global statements, place them

before the PRINT procedure. Titles and footnotes are assigned as soon as
TITLE or FOOTNOTE statements are read; they apply to all subsequent output.

General form, TITLE and FOOTNOTE statements:

TITLE<n> 'text';
FOOTNOTE<n> 'text';

where
� n is a number from 1 to 10 that specifies the title or footnote line
� 'text' is the actual title or footnote to be displayed.

Warning Be sure to match quotation marks that enclose the title or footnote text.

Note The maximum title or footnote length depends on your operating environment and

on the value of the LINESIZE= option.

The keyword title is equivalent to title1. Likewise, the keyword footnote is
equivalent to footnote1.

If you don't specify a title, the default title is The SAS System . No footnote is
printed unless you specify one.

Examples: Titles

The two TITLE statements below, specified for lines 1 and 3, define titles for the PROC PRINT
output.

title1 'Heart Rates for Patients with';

title3 'Increased Stress Tolerance Levels';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

In HTML output , title lines appear consecutively, without extra spacing to indicate skipped title
numbers.

Heart Rates for Patients with Increased Stress Tolerance Levels

Obs RestHR MaxHR RecHR

2 68 171 133

 89

Heart Rates for Patients with Increased Stress Tolerance Levels

Obs RestHR MaxHR RecHR

3 78 177 139

8 70 167 122

11 65 181 141

14 74 152 113

15 75 158 108

20 78 189 138

In SAS listing output , title line 2 is blank, as shown below. Titles are centered by default.

 Heart Rates for Patients with

 Increased Stress Tolerance Levels

 OBS RestHR MaxHR RecHR

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

 14 74 152 113

 15 75 158 108

 20 78 189 138

Examples: Footnotes

The two FOOTNOTE statements below, specified for lines 1 and 3, define footnotes for the
PROC PRINT output.

footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

Footnotes appear at the bottom of each page of procedure output. Notice that footnote lines are
“pushed up” from the bottom. The FOOTNOTE statement that has the largest number appears on
the bottom line.

 90

In HTML output , footnote lines simply appear consecutively, without extra spacing to indicate
skipped footnote numbers.

Obs RestHR MaxHR RecHR

2 68 171 133

3 78 177 139

8 70 167 122

11 65 181 141

14 74 152 113

15 75 158 108

20 78 189 138

Data from Treadmill Tests 1st Quarter Admissions

In SAS listing output , footnote line 2 is blank, as shown below. Footnotes are centered by
default.

 OBS RestHR MaxHR RecHR

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

 14 74 152 113

 15 75 158 108

 20 78 189 138

 Data from Treadmill Tests

 1st Quarter Admissions

Modifying and Canceling Titles and Footnotes

TITLE and FOOTNOTE statements are global statements . That is, after you define a title or
footnote, it remains in effect until you modify it, cancel it, or end your SAS session.

For example, the footnotes that are assigned in the PROC PRINT step below also appear in the
output from the PROC TABULATE step.

footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 91

 where tolerance='I';

run;

proc tabulate data=clinic.stress;

 where tolerance='I';

 var resthr maxhr;

 table mean*(resthr maxhr);

run;

Re-defining a title or footnote line cancels any higher-numbered title or footnote line, in that order.
In the example below, defining a title for line 2 in the second report automatically cancels title line
3.

title3 'Participation in Exercise Therapy';

proc print data=clinic.therapy;

 var swim walkjogrun aerclass;

run;

title2 'Report for March';

proc print data=clinic.therapy;

run;

To cancel all previous titles or footnotes, specify a null TITLE or FOOTNOTE statement (a TITLE
or FOOTNOTE statement with no number or text) or a TITLE1 or FOOTNOTE1 statement with no
text. This will also cancel the default title The SAS System .

For example, in the program below, the null TITLE1 statement cancels all titles that are in effect
before either PROC step executes. The null FOOTNOTE statement cancels all footnotes that are
in effect after the PROC PRINT step executes. The PROC TABULATE output appears without a
footnote.

title1;

footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

footnote;

proc tabulate data=clinic.stress;

 var timemin timesec;

 table max*(timemin timesec);

run;

Assigning Descriptive Labels

Temporarily Assigning Labels to Variables

 92

You can also enhance your PROC PRINT report by labeling columns with more descriptive text.
To label columns, you use
� the LABEL statement to assign a descriptive label to a variable
� the LABEL option in the PROC PRINT statement to specify that the labels be displayed.

General form, LABEL statement:

LABEL variable1='label1'
 variable2='label2'
 ... ;

Labels can be up to 256 characters long. Enclose the label in quotation marks.

Note The LABEL statement applies only to the PROC step in which it appears.

Example

In the PROC PRINT step below, the variable name WalkJogRun is displayed with the label
Walk/Jog/Run . Note the LABEL option in the PROC PRINT statement.

proc print data=clinic.therapy label;

 label walkjogrun='Walk/Jog/Run';

run;

Obs Date AerClass Walk/Jog/Run Swim

1 JAN1999 56 78 14

2 FEB1999 32 109 19

3 MAR1999 35 106 22

4 APR1999 47 115 24

5 MAY1999 55 121 31

6 JUN1999 61 114 67

7 JUL1999 67 102 72

8 AUG1999 64 76 77

9 SEP1999 78 77 54

10 OCT1999 81 62 47

11 NOV1999 84 31 52

12 DEC1999 2 44 55

13 JAN2000 37 91 83

14 FEB2000 41 102 27

15 MAR2000 52 98 19

16 APR2000 61 118 22

 93

Obs Date AerClass Walk/Jog/Run Swim

17 MAY2000 49 88 29

18 JUN2000 24 101 54

19 JUL2000 45 91 69

20 AUG2000 63 65 53

21 SEP2000 60 49 68

22 OCT2000 78 70 41

23 NOV2000 82 44 58

24 DEC2000 93 57 47

Using Single or Multiple LABEL Statements

You can assign labels in separate LABEL statements …

proc print data=clinic.admit label;

 var age height;

 label age='Age of Patient';

 label height='Height in Inches';

run;

…or you can assign any number of labels in a single LABEL statement.

proc print data=clinic.admit label;

 var actlevel height weight;

 label actlevel='Activity Level'

 height='Height in Inches'

 weight='Weight in Pounds';

run;

Formatting Data Values

Temporarily Assigning Formats to Variables

In your SAS reports, formats control how the data values are displayed. To make data values
more understandable when they are displayed in your procedure output, you can use the
FORMAT statement, which associates formats with variables.

Formats affect only how the data values appear in output, not the actual data values as they are
stored in the SAS data set.

General form, FORMAT statement:

FORMAT variable(s) format-name;

where

 94

� variable(s) is the name of one or more variables whose values are to be written according
to a particular pattern

� format-name specifies a SAS format or a user-defined format that is used to write out the
values.

Note The FORMAT statement applies only to the PROC step in which it

appears.

You can use a separate FORMAT statement for each variable, or you can format several
variables (using either the same format or different formats) in a single FORMAT statement.

This FORMAT
Statement

Associates To display
Values as

format date
mmddyy8.;

the format MMDDYY8. with the variable
Date

06/05/03

format net
comma5.0
 gross
comma8.2;

the format COMMA5.0 with the variable
Net and the format COMMA8.2 with the
variable Gross

1,234

5,678.90

format net gross
dollar9.2;

the format DOLLAR9.2 with both
variables, Net and Gross

$1,234.00

$5,678.90

For example, the FORMAT statement below writes values of the variable Fee using dollar signs,
commas, and no decimal places:

proc print data=clinic.admit;

 var actlevel fee;

 where actlevel='HIGH';

 format fee dollar4.;

run;

Obs ActLevel Fee

1 HIGH $85

2 HIGH $125

6 HIGH $125

11 HIGH $150

14 HIGH $125

18 HIGH $85

20 HIGH $150

Specifying SAS Formats

The table below describes some SAS formats that are commonly used in reports.

Format Specifies These Values Example

 95

Format Specifies These Values Example

COMMAw.d that contain commas and decimal places comma8.2

DOLLARw.d that contain dollar signs, commas, and decimal places dollar6.2

MMDDYYw. as date values of the form 09/12/97 (MMDDYY8.) or
09/12/1997 (MMDDYY10.)

mmddyy10.

w. rounded to the nearest integer in w spaces 7.

w.d rounded to d decimal places in w spaces 8.2

$w. as character values in w spaces $12.

DATEw. as date values of the form 16OCT99 (DATE7.) or
16OCT1999 (DATE9.)

date9.

Field Widths

All SAS formats specify the total field width (w) that is used for displaying the values in the output.
For example, suppose the longest value for the variable Net is a four-digit number, such as 5400.
To specify the COMMAw.d format for Net , you specify a field width of 5 or more. You must count
the comma, because it occupies a position in the output, as shown in the table below.

Warning When you use a SAS format, be sure to specify a field width (w) that is wide

enough for the largest possible value. Otherwise, values might not be
displayed properly.

Stored Value 5400

Desired Format COMMAw.d

Displayed Value 5,400

Positions Displayed in Output 5

FORMAT statement format net comma5.0;

Decimal Places

For numeric variables you can also specify the number of decimal places (d), if any, to be
displayed in the output. Numbers are rounded to the specified number of decimal places.

Writing the whole number 2030 as 2,030.00 requires eight print positions, including two decimal
places and the decimal point.

Stored Value 2030

Desired Format COMMAw.d

Displayed Value 2,030.00

Positions Displayed in Output 8

FORMAT statement format qtr3tax
comma8.2;

Formatting 15374 with a dollar sign, commas, and two decimal places requires 10 print positions.

 96

Stored Value 15374

Desired Format DOLLARw.d

Displayed Value $15,374.00

Positions Displayed in Output 10

FORMAT statement format totsales dollar10.2;

Examples

This table shows you how data values are displayed when different format, field width, and
decimal place specifications are used.

Stored Value Format Displayed Value

38245.3975 COMMA12.2 38,245.40

38245.3975 12.2 38245.40

38245.3975 DOLLAR12.2 $38,245.40

38245.3975 DOLLAR9.2 $38245.40

38245.3975 DOLLAR8.2 38245.40

0 MMDDYY8. 01/01/60

0 MMDDYY10. 01/01/1960

0 DATE7. 01JAN60

0 DATE9. 01JAN1960

Note If a format is too small, the following message is written to the

SAS log: "NOTE: At least one W.D format was too small for the
number to be printed. The decimal may be shifted by the 'BEST'
format."

Using Permanently Assigned Labels and Formats

You have seen how to temporarily assign labels and formats to variables. When you use a
LABEL or FORMAT statement within a PROC PRINT step, the label or format applies only to the
output from that step.

However, in your PROC PRINT steps, you can also take advantage of permanently assigned
labels or formats. Permanent labels and formats can be assigned in the DATA step. These labels
and formats are saved with the data set, and they can later be used by procedures that reference
the data set.

For example, the DATA step below creates Flights.March and defines a format and label for the
variable Date . Because the LABEL and FORMAT statements are inside the DATA step, they are
written to the Flights.March data set and are available to the subsequent PRINT procedure.

data flights.march;

 set flights.mar01;

 label date='Departure Date';

 format date date9.;

 97

run;

proc print data=flights.march label;

run;

Partial Listing

Obs Departure Date Dest Boarded

1 01MAR2000 LON 198

2 01MAR2000 PAR 207

3 01MAR2000 LON 205

4 01MAR2000 COP 138

5 01MAR2000 MUN 147

Notice that the PROC PRINT statement still requires the LABEL option in order to display the
permanent labels. Many other SAS procedures display permanently assigned labels and formats
without additional statements or options.

Note You can learn more about permanently assigning labels and formats in Chapter

11, Creating and Managing Variables .

Additional Features

When you create list reports, you can use several other features to enhance your procedure
output. For example, you can
� control where text strings split in labels by using the SPLIT= option.

 proc print data=reps split='*';

 var salesrep type unitsold net commission;

 label salesrep='Sales*Representative';

 run;
� create your own formats, which are particularly useful for formatting character values.

 proc format;

 value $repfmt

 'TFB'='Bynum'

 'MDC'='Crowley'

 'WKK'='King';

 proc print data=vcrsales;

 var salesrep type unitsold;

 format salesrep $repfmt.;

 run;

Note You can learn more about user-defined formats in Chapter 7, Creating and

Applying User-Defined Formats .

Summary

Text Summary

 98

Creating a Basic Report

To list the information in a SAS data set, you can use PROC PRINT. You use the PROC PRINT
statement to invoke the PRINT procedure and to specify the data set that you are listing. Include
the DATA= option to specify the data set that you are using. By default, PROC PRINT displays all
observations and variables in the data set, includes a column for observation numbers on the far
left, and displays variables in the order in which they occur in the data set. If you use a LABEL
statement with PROC PRINT, you must specify the LABEL option or the SPLIT= option in the
PROC PRINT statement.

To refine a basic report, you can
� select which variables and observations are processed
� sort the data
� generate column totals for numeric variables.

Selecting Variables

You can select variables and control the order in which they appear by using a VAR statement in
your PROC PRINT step. To remove the Obs column, you can specify the NOOBS option in the
PROC PRINT statement. As an alternative, you can replace the Obs column with one or more
variables by using the ID statement .

Selecting Observations

The WHERE statement enables you to select observations that meet a particular condition in the
SAS data set. You use comparison operators to express a condition in the WHERE statement.
You can also use the CONTAINS operator to express a condition in the WHERE statement. To
specify a condition based on the value of a character variable, you must enclose the value in
quotation marks, and you must write the value with lowercase and uppercase letters exactly as it
appears in the data set. You can also use WHERE statements to select a subset of observations
based on multiple conditions. To link a sequence of expressions to compound expressions, you
use logical operators . When you test for multiple values of the same variable, you specify the
variable name in each expression. You can use the IN operator as a convenient alternative. To
control how compound expressions are evaluated, you can use parentheses.

Sorting Data

To display your data in sorted order, you use PROC SORT to sort your data before using PROC
PRINT to create reports. By default, PROC SORT sorts the data set that is specified in the
DATA= option and overwrites this data set with the sorted data set. If you do not want your
original data to be sorted permanently, you must create an output data set that contains the data
in sorted order. The OUT= option in the PROC SORT statement specifies an output data set. If
you need sorted data to produce output for only one SAS session, you should specify a
temporary SAS data set as the output data set. The BY statement, which is required with PROC
SORT, specifies the variable(s) whose values are used to sort the data.

Generating Column Totals

To total the values of numeric variables, use the SUM statement in the PROC PRINT step. You
do not need to specify the variables in a VAR statement if you specify them in the SUM
statement. Column totals appear at the end of the report in the same format as the values of the
variables. To produce subtotals, add both the SUM statement and the BY statement to your
PROC PRINT step. To show BY variable headings only once, use an ID and BY statement

 99

together with the SUM statement. As another enhancement to your report, you can request that
each BY group be printed on a separate page by using the PAGEBY statement .

Double-Spacing Output

To double-space your SAS listing output, you can specify the DOUBLE option in the PROC
PRINT statement.

Specifying Titles

To make your report more meaningful and self-explanatory, you can specify up to 10 titles with
procedure output by using TITLE statements anywhere within or preceding the PROC step. After
you define a title, it remains in effect until you modify it, cancel it, or end your SAS session.
Redefining a title line cancels any higher-numbered title lines. To cancel all previous titles, specify
a null TITLE statement (a TITLE statement with no number or text).

Specifying Footnotes

To add footnotes to your output, you can use the FOOTNOTE statement . Like TITLE statements,
FOOTNOTE statements are global. Footnotes appear at the bottom of each page of procedure
output, and footnote lines are "pushed up" from the bottom. The FOOTNOTE statement that has
the largest number appears on the bottom line. After you define a footnote, it remains in effect
until you modify it, cancel it, or end your SAS session. Re-defining a footnote line cancels any
higher- numbered footnote lines. To cancel all previous footnotes, specify a null FOOTNOTE
statement (a FOOTNOTE statement with no number or text).

Assigning Descriptive Labels

To label the columns in your report with more descriptive text, you use the LABEL statement ,
which assigns a descriptive label to a variable. To display the labels that were assigned in a
LABEL statement, you must specify the LABEL option in the PROC PRINT statement.

Formatting Data Values

To make data values more understandable when they are displayed in your procedure output,
you can use the FORMAT statement , which associates formats with variables. The FORMAT
statement remains in effect only for the PROC step in which it appears. Formats affect only how
the data values appear in output, not the actual data values as they are stored in the SAS data
set. All SAS formats specify the total field width (w) that is used for displaying the values in the
output. For numeric variables you can also specify the number of decimal places (d), if any, to be
displayed in the output.

Using Permanently Assigned Labels and Formats

You can take advantage of permanently assigned labels or formats without adding LABEL or
FORMAT statements to your PROC step. Some SAS procedures require a LABEL option in order
to display permanent labels. Many other SAS procedures display permanently assigned labels
and formats within additional statements or options.

Points to Remember
� VAR, WHERE, and SUM statements remain in effect only for the PROC step in which

they appear.

 100

� If you don't use the OUT= option, PROC SORT permanently sorts the data set that is
specified in the DATA= option.

� TITLE and FOOTNOTE statements remain in effect until you modify them, cancel them,
or end your SAS session.

� Be sure to match the quotation marks that enclose the text in TITLE, FOOTNOTE, and
LABEL statements.

� To display labels in PRINT procedure output, remember to add the LABEL option to the
PROC PRINT statement.

� To permanently assign labels or formats to data set variables, place the LABEL or
FORMAT statement inside the DATA step.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which PROC PRINT step below creates the following output?

Date On Changed Flight

04MAR99 232 18 219

05MAR99 160 4 219

06MAR99 163 14 219

07MAR99 241 9 219

08MAR99 183 11 219

09MAR99 211 18 219

10MAR99 167 7 219

a. roc print data=flights.laguardia noobs;

b. var on changed flight;

c. where on>=160;

d. run;

e. proc print data=flights.laguardia;

f. var date on changed flight;

g. where changed>3;

h. run;

i. proc print data=flights.laguardia label;

j. id date;

k. var boarded transferred flight;

l. label boarded='On' transferred='Changed';

m. where flight='219';

n. run;

o. proc print flights.laguardia noobs;

p. id date;

q. var date on changed flight;

 101

r. where flight='219';

s. run;

2. Which of the following PROC PRINT steps is correct if labels are not stored with the
data set?

a. proc print data=allsales.totals label;

b. label region8='Region 8 Yearly Totals';

c. run;

d. proc print data=allsales.totals; label region8='R egion
8 Yearly Totals';

e. run;

f. proc print data allsales.totals label noobs;

g. run;

h. proc print allsales.totals label;

i. run;

3. Which of the following statements selects from a data set only those observations for
which the value of the variable Style is RANCH, SPLIT, or TWOSTORY?

a. where style='RANCH' or 'SPLIT' or 'TWOSTORY';
b. where style in 'RANCH' or 'SPLIT' or 'TWOSTORY';
c. where style in (RANCH, SPLIT, TWOSTORY);
d. where style in ('RANCH','SPLIT','TWOSTORY');

4. If you want to sort your data and create a temporary data set named Calc to store the
sorted data, which of the following steps should you submit?

a. proc sort data=work.calc out=finance.dividend;

b. run;

c. proc sort dividend out=calc;

d. by account;

e. run;

f. proc sort data=finance.dividend out=work.calc;

g. by account;

h. run;

i. proc sort from finance.dividend to calc;

j. by account;

k. run;

5. Which options are used to create the following PROC PRINT output?

 13:27 Monday, March 22, 1999

 Patient Arterial Heart Cardiac Urinar y

 203 88 95 66 110

 102

 54 83 183 95 0

 664 72 111 332 12

 210 74 97 369 0

 101 80 130 291 0

a. the DATE system option and the LABEL option in PROC PRINT
b. the DATE and NONUMBER system options and the DOUBLE and NOOBS

options in PROC PRINT
c. the DATE and NONUMBER system options and the DOUBLE option in PROC

PRINT
d. the DATE and NONUMBER system options and the NOOBS option in PROC

PRINT

6. Which of the following statements can you use in a PROC PRINT step to create this
output?

Month Instructors AerClass WalkJogRun Swim

01 1 37 91 83

02 2 41 102 27

03 1 52 98 19

04 1 61 118 22

05 3 49 88 29

 8 240 497 180

a. var month instructors;

b. sum instructors aerclass walkjogrun swim;

c. var month;

d. sum instructors aerclass walkjogrun swim;

e. var month instructors aerclass;

f. sum instructors aerclass walkjogrun swim;
g. all of the above

7. What happens if you submit the following program?

proc sort data=clinic.diabetes;

run;

proc print data=clinic.diabetes;

 var age height weight pulse;

 where sex='F';

run;

 103

a. The PROC PRINT step runs successfully, printing observations in their sorted
order.

b. The PROC SORT step permanently sorts the input data set.
c. The PROC SORT step generates errors and stops processing, but the PROC

PRINT step runs successfully, printing observations in their original (unsorted)
order.

d. The PROC SORT step runs successfully, but the PROC PRINT step
generates errors and stops processing.

8. If you submit the following program, which output does it create?

proc sort data=finance.loans out=work.loans;

 by months amount;

run;

proc print data=work.loans noobs;

 var months;

 sum amount payment;

 where months<360;

run;
a.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

 $27,200 $1,165.03

b.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

 27,200 1,165.03

c.

Months Amount Payment

12 $3,500 $308.52

48 $5,000 $128.02

 104

24 $8,700 $403.47

36 $10,000 $325.02

 $27,200 $1,165.03

d.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

 $1,165.03

e.

9. Choose the statement below that selects rows in which
� the amount is less than or equal to $5000
� the account is 101–1092, or the rate equals 0.095.

a. where amount <= 5000 and

b. account='101-1092' or rate = 0.095;

c. where (amount le 5000 and account='101-1092')

d. or rate = 0.095;

e. where amount <= 5000 and

f. (account='101-1092' or rate eq 0.095);

g. where amount <= 5000 or account='101-1092'

h. and rate = 0.095;

10. What does PROC PRINT display by default?
a. PROC PRINT does not create a default report; you must specify the rows and

columns to be displayed.
b. PROC PRINT displays all observations and variables in the data set. If you

want an additional column for observation numbers, you can request it.
c. PROC PRINT displays columns in the following order: a column for

observation numbers, all character variables, and all numeric variables.
d. PROC PRINT displays all observations and variables in the data set, a

column for observation numbers on the far left, and variables in the order in
which they occur in the data set.

Answers

1. Correct answer: c

The DATA= option specifies the data set that you are listing, and the ID statement replaces

 105

the Obs column with the specified variable. The VAR statement specifies variables and
controls the order in which they appear, and the WHERE statement selects rows based on a
condition. The LABEL option in the PROC PRINT statement causes the labels that are
specified in the LABEL statement to be displayed.

2. Correct answer: a

You use the DATA= option to specify the data set to be printed. The LABEL option specifies
that variable labels appear in output instead of variable names.

3. Correct answer: d

In the WHERE statement, the IN operator enables you to select observations based on
several values. You specify values in parentheses and separate them by spaces or commas.
Character values must be enclosed in quotation marks and must be in the same case as in
the data set.

4. Correct answer: c

In a PROC SORT step, you specify the DATA= option to specify the data set to sort. The
OUT= option specifies an output data set. The required BY statement specifies the
variable(s) to use in sorting the data.

5. Correct answer: b

The DATE and NONUMBER system options cause the output to appear with the date but
without page numbers. In the PROC PRINT step, the DOUBLE option specifies double
spacing, and the NOOBS option removes the default Obs column.

6. Correct answer: d

You do not need to name the variables in a VAR statement if you specify them in the SUM
statement, but you can. If you choose not to name the variables in the VAR statement as
well, then the SUM statement determines the order of the variables in the output.

7. Correct answer: c

The BY statement is required in PROC SORT. Without it, the PROC SORT step fails.
However, the PROC PRINT step prints the original data set as requested.

8. Correct answer: a

Column totals appear at the end of the report in the same format as the values of the
variables, so b is incorrect. Work.Loans is sorted by Month and Amount, so c is incorrect.
The program sums both Amount and Payment , so d is incorrect.

9. Correct answer: c

To ensure that the compound expression is evaluated correctly, you can use parentheses to
group

OBS Account Amount Rate MonthsPayment

1 101-1092 $22,000 10.00%60 $467.43

2 101-1731 $114,0009.50%360 $958.57

 106

3 101-1289 $10,000 10.50%36 $325.02

4 101-3144 $3,500 10.50%12 $308.52

5 103-1135 $8,700 10.50%24 $403.47

6 103-1994 $18,500 10.00%60 $393.07

7 103-2335 $5,000 10.50%48 $128.02

8 103-3864 $87,500 9.50%360 $735.75

9 103-3891 $30,000 9.75%360 $257.75

For example, from the data set above, a and b above select observations 2 and 8 (those that
have a rate of 0.095); c selects no observations; and d selects observations 4 and 7 (those
that have an amount less than or equal to 5000).

10. Correct answer: d

You can remove the column for observation numbers. You can also specify the variables you
want, and you can select observations according to conditions.

 107

Chapter 5: Creating SAS Data Sets from Raw Data

Overview

Introduction

In order to create reports with SAS procedures, your data must be in the form of a SAS data set.
If your data is not stored in the form of a SAS data set, then you need to create a SAS data set by
entering data, by reading raw data, or by accessing external files (files that were created by other
software).

This shows you how to design and write a DATA step program to create a SAS data set from raw
data that is stored in an external file. It also shows you how to read data from a SAS data set and
write observations out to a raw data file.

Objectives

In this chapter, you learn to
� reference a SAS library
� reference a raw data file
� name a SAS data set to be created
� specify a raw data file to be read
� read standard character and numeric values in fixed fields
� create new variables and assign values
� select observations based on conditions
� read instream data
� submit and verify a DATA step program
� read a SAS data set and write the observations out to a raw data file.

Raw Data Files

A raw data file is an external text file whose records contain data values that are organized in
fields. Raw data files are non-proprietary and can be read by a variety of software programs. The
sample raw data files in this book are shown with a ruler to help you identify where individual
fields begin and end. The ruler is not part of the raw data file.

 108

The table below describes the record layout for a raw data file that contains readings from
exercise stress tests that have been performed on patients at a health clinic. Exercise
physiologists in the clinic use the test results to prescribe various exercise therapies. The file
contains fixed fields; that is, values for each variable are in the same location in all records.

Field Name Starting Column Ending
Column

Description of Field

ID 1 4 patient ID number

Name 6 25 patient name

RestHR 27 29 resting heart rate

MaxHR 31 33 maximum heart rate during
test

RecHR 35 37 recovery heart rate after test

TimeMin 39 40 time, complete minutes

TimeSec 42 43 time, seconds

Tolerance 45 45 comparison of stress test
tolerance between this test
and the last test (I=increased,
D=decreased, S=same, N=no
previous test)

Steps to Create a SAS Data Set

Let's take a look at the steps for creating a SAS data set from a raw data file. In the first part of
this chapter, you will learn the steps to create a SAS data set from a raw data file that contains
fixed fields. The examples shown use a raw data file that contains data from exercise stress tests,
which was introduced on the previous page.

Before reading the raw data from the file, you must first reference the SAS library in which you
will store the data set. Then you can write a DATA step program to read the raw data file and
create a SAS data set.

To read the raw data file, the DATA step must provide the following instructions to SAS:
� the location or name of the external text file
� a name for the new SAS data set
� a reference that identifies the external file
� a description of the data values to be read.

After using the DATA step to read the raw data, you can use a PROC PRINT step to produce a
list report that displays the data values that are in the new data set.

The table below outlines the basic statements that you'll use to construct your program.
Throughout this chapter, you'll see similar tables that show sample SAS statements for reading
raw data in fixed fields.

To Do This Use This SAS Statement

Reference a SAS data library LIBNAME statement

Reference an external file FILENAME statement

 109

To Do This Use This SAS Statement

Name a SAS data set DATA statement

Identify an external file INFILE statement

Describe data INPUT statement

Execute the DATA step RUN statement

List the data PROC PRINT statement

Execute the final program step RUN statement

You can also use additional SAS statements to perform tasks that customize your data for your
needs. For example, you might want to create new variables from the values of existing variables.

Referencing a SAS Library

Using a LIBNAME Statement

As you begin to write the program, remember that you use a LIBNAME statement to reference
the permanent SAS library in which the data set will be stored.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME statement libname libref 'SAS-data-
library';

For example, the LIBNAME statement below assigns the libref Taxes to the SAS library
C:\Users\Acct\Qtr1\Report in the Windows environment.

 libname taxes 'c:\users\acct\qtr1\report';

You do not need to use a LIBNAME statement in all situations. For example, you do not need to
use a LIBNAME statement if you are storing the data set in a temporary SAS data set or if SAS
has automatically assigned the libref for the permanent library that you are using.

Referencing a Raw Data File

Using a FILENAME Statement

Before you can read your raw data, you must point to the location of the external file that contains
the data. You use the FILENAME statement to point to this location.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME statement libname libref 'SAS-data-
library';

Reference an external
file

FILENAME
statement

filename tests
'c:\users\tmill.dat';

Just as you assign a libref by using a LIBNAME statement, you assign a fileref by using a
FILENAME statement.

 110

Filerefs perform the same function as librefs: they temporarily point to a storage location for data.
However, librefs reference SAS data libraries, whereas filerefs reference external files.

General form, FILENAME statement:

FILENAME fileref 'filename';

where
� fileref is a name that you associate with an external file. The name must be 1 to 8

characters long, begin with a letter or underscore, and contain only letters, numbers, or
underscores.

� filename is the fully qualified name or location of the file.

Defining a Fully Qualified Filename

The following FILENAME statement temporarily associates the fileref Tests with the external file
that contains the data from the exercise stress tests. The complete filename is specified as
C:\Users\Tmill.dat in the Windows environment.

 filename tests 'c:\users\tmill.dat';

Defining an Aggregate Storage Location

You can also use a FILENAME statement to associate a fileref with an aggregate storage
location, such as a directory that contains multiple external files.

 111

This FILENAME statement temporarily associates the fileref Finance with the aggregate storage
directory C:\Users\Personal\Finances :

filename finance 'c:\users\personal\finances';

Note Both the LIBNAME and FILENAME statements are global. In other words, they

remain in effect until you change them, cancel them, or end your SAS session.

Referencing a Fully Qualified Filename

When you associate a fileref with an individual external file, you specify the fileref in subsequent
SAS statements and commands.

Referencing a File in an Aggregate Storage Location

To reference an external file with a fileref that points to an aggregate storage location, you specify
the fileref followed by the individual filename in parentheses:

Note In the Windows operating environment, you can omit the filename extension but

you will need to add quotation marks when referencing the external file, as in

infile tax(‘refund’);

For details about referencing external files stored in aggregate storage
locations, see the SAS documentation for your operating environment.

Writing a DATA Step Program

Naming the Data Set

The DATA statement indicates the beginning of the DATA step and names the SAS data set to
be created.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME
statement

libname libref 'SAS-data-
library';

Reference an external file FILENAME
statement

filename tests
'c:\users\tmill.dat';

 112

To Do This Use This SAS
Statement

Example

Name a SAS data set DATA statement data clinic.stress;

General form, basic DATA statement:

DATA SAS-data-set-1 <...SAS-data-set-n>;

where SAS-data-set names (in the format libref.filename) the data set or data sets to be created.

In the following example, the two-level name Clinic.Admit specifies that the file Admit is stored
in the permanent SAS library to which the libref Clinic has been assigned.

Specifying the Raw Data File

When reading raw data, use the INFILE statement to indicate which file the data is in.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME
statement

libname libref 'SAS-data-
library';

Reference an external file FILENAME
statement

filename tests
'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

General form, INFILE statement:

INFILE file-specification <options>;

where
� file-specification can take the form fileref to name a previously defined file reference or

'filename' to point to the actual name and location of the file
� options describes the input file's characteristics and specifies how it is to be read with the

INFILE statement.

To read the raw data file to which the fileref Tests has been assigned, you write the following
INFILE statement:

 infile tests;

Note Instead of using a FILENAME statement, you can choose to identify the raw

data file by specifying the entire filename and location in the INFILE statement.

 113

For example, the following statement points directly to the
C:\Irs\Personal\Refund.dat file:

 infile 'c:\irs\personal\refund.dat';

Column Input

In this chapter, you'll be working with column input, the most common input style. Column input
specifies actual column locations for values. However, column input is appropriate only in certain
situations. When you use column input, your data must be
� standard character or numeric values
� in fixed fields.

Standard and Nonstandard Numeric Data

Standard numeric data values can contain only
� numbers
� decimal points
� numbers in scientific or E-notation (2.3E4, for example)
� plus or minus signs.

Nonstandard numeric data includes
� values that contain special characters, such as percent signs (%), dollar signs ($), and

commas (,)
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

The external file that is referenced by the fileref Staff contains the personnel information for a
technical writing department of a small computer manufacturer. The fields contain values for each
employee's last name, first name, job title, and annual salary.

Notice that the values for Salary contain commas. The values for Salary are considered to be
nonstandard numeric values. You cannot use column input to read these values.

Fixed-Field Data

Raw data can be organized in several different ways.

This external file contains data that is in free format, meaning data that is not arranged in
columns. Notice that the values for a particular field do not begin and end in the same columns.
You cannot use column input to read this file.

 114

This external file contains data that is arranged in columns or fixed fields. You can specify a
beginning and ending column for each field. Let's look at how column input can be used to read
this data.

Describing the Data

The INPUT statement describes the fields of raw data to be read and placed into the SAS data
set.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME
statement

libname libref 'SAS-data-
library';

Reference an external file FILENAME
statement

filename tests
'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

Describe data INPUT statement input ID 1-4 Age 6-7 ...;

Execute the DATA step RUN statement run;

General form, INPUT statement using column input:

INPUT variable ;<$> startcol-endcol . . .

where
� variable is the SAS name that you assign to the field
� the dollar sign ($) identifies the variable type as character (if the variable is numeric, then

nothing appears here)
� startcol represents the starting column for this variable
� endcol represents the ending column for this variable.

 115

Look at the small data file shown below. For each field of raw data that you want to read into your
SAS data set, you must specify the following information in the INPUT statement:
� a valid SAS variable name
� a type (character or numeric)
� a range (starting column and ending column).

The INPUT statement below assigns the character variable ID to the data in columns 1–4, the
numeric variable Age to the data in columns 6–7, the character variable ActLevel to the data in
columns 9–12, and the character variable Sex to the data in column 14.

filename exer 'c:\users\exer.dat';

data exercise;

 infile exer;

 input ID $ 1-4 Age 6-7 ActLevel $ 9-12 Sex $ 14;

run;

SAS Data Set Work.Exercise

Obs ID Age ActLevel Sex

1 2810 61 MOD F

2 2804 38 HIGH F

3 2807 42 LOW M

4 2816 26 HIGH M

5 2833 32 MOD F

6 2823 29 HIGH M

When you use column input, you can
� read any or all fields from the raw data file
� read the fields in any order
� specify only the starting column for values that occupy only one column.

 input ActLevel $ 9-12 Sex $ 14 Age 6-7;

Note Remember, when you create a new variable, you must specify it in the exact

case that you want it stored. An example is NewBalance. Thereafter, you can
specify the variable in lowercase.

Specifying Variable Names

Each variable has a name that conforms to SAS naming conventions. Variable names
� must be 1 to 32 characters in length
� must begin with a letter (A–Z) or an underscore (_)
� can continue with any combination of numbers, letters, or underscores.

 116

Let's look at an INPUT statement that uses column input to read the three data fields in the raw
data file below.

The values for the variable that you are naming Age are located in columns 1–2. Because Age is
a numeric variable, you do not specify a dollar sign ($) after the variable name.

input Age 1–2

The values for the variable ActLevel are located in columns 3–6. You specify a $ to indicate
that ActLevel is a character variable.

input Age 1-2 ActLevel $ 3–6

The values for the character variable Sex are located in column 7. Notice that you specify only a
single column.

input Age 1–2 ActLevel $ 3–6 Sex $ 7;

Submitting the DATA Step Program

Verifying the Data

To verify your data, it is a good idea to use the OBS= option in the INFILE statement. Adding
OBS=n to the INFILE statement enables you to process only records 1 through n, so you can
verify that the correct fields are being read before reading the entire data file.

The program below reads the first 10 records in the raw data file referenced by the fileref Tests .
The data is stored in a permanent SAS data set named Clinic.Stress . Don't forget a RUN
statement, which tells SAS to execute the previous SAS statements.

data clinic.stress;

 infile tests obs=10;

 input ID 1-4 Name $ 6-25

 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

run;

SAS Data Set Clinic.Stress

ID Name RestH
R

MaxH
R

RecH
R

TimeMi
n

TimeSe
c

Toleranc
e

245
8

Murray, W 72 185 128 12 38 D

 117

SAS Data Set Clinic.Stress

ID Name RestH
R

MaxH
R

RecH
R

TimeMi
n

TimeSe
c

Toleranc
e

246
2

Almers, C 68 171 133 10 5 I

250
1

Bonaventur
e, T

78 177 139 11 13 I

252
3

Johnson, R 69 162 114 9 42 S

253
9

LaMance,
K

75 168 141 11 46 D

254
4

Jones, M 79 187 136 12 26 N

255
2

Reberson,
P

69 158 139 15 41 D

255
5

King, E 70 167 122 13 13 I

256
3

Pitts, D 71 159 116 10 22 S

256
8

Eberhardt,
S

72 182 122 16 49 N

Checking DATA Step Processing

After submitting the previous program, messages in the log verify that the raw data file was read
correctly. The notes in the log indicate that
� 10 records were read from the raw data file
� the SAS data set Clinic.Stress was created with 10 observations and 8 variables.
SAS Log

NOTE: The infile TESTS is:

 File Name=C:\My SAS Files\tests.dat,

 RECFM=V,LRECL=256

NOTE: 10 records were read from the infile TESTS.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 10 observation s

 and 8 variables.

NOTE: DATA statement used 0.07 seconds

 118

Listing the Data Set

The messages in the log seem to indicate that the DATA step program correctly accessed the
raw data file. But it is a good idea to look at the ten observations in the new data set before
reading the entire raw data file. You can submit a PROC PRINT step to view the data.

To Do This Use This SAS
Statement

Example

Reference a SAS data
library

LIBNAME
statement

libname libref 'SAS-data-
library';

Reference an external file FILENAME
statement

filename tests
'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

Describe data INPUT statement input ID 1-4 Name $ 6-25 ...;

Execute the DATA step RUN statement run;

List the data PROC PRINT
statement

proc print
data=clinic.stress;

Execute the final program
step

RUN statement run;

The following PROC PRINT step lists the Clinic.Stress data set.

 proc print data=clinic.stress;

 run;

The PROC PRINT output indicates that the variables in the Clinic.Stress data set were read
correctly for the first 10 records.

Ob
s

ID Name Rest
HR

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

1 24
58

Murray, W 72 185 128 12 38 D

2 24
62

Almers, C 68 171 133 10 5 I

3 25
01

Bonaventu
re, T

78 177 139 11 13 I

4 25
23

Johnson,
R

69 162 114 9 42 S

5 25
39

LaMance,
K

75 168 141 11 46 D

6 25
44

Jones, M 79 187 136 12 26 N

7 25
52

Reberson,
P

69 158 139 15 41 D

 119

Ob
s

ID Name Rest
HR

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

8 25
55

King, E 70 167 122 13 13 I

9 25
63

Pitts, D 71 159 116 10 22 S

10 25
68

Eberhardt,
S

72 182 122 16 49 N

Reading the Entire Raw Data File

Now that you've checked the log and verified your data, you can modify the DATA step to read
the entire raw data file. To do so, remove the OBS= option from the INFILE statement and re-
submit the program.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25

 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

run;

Invalid Data

When you submit the revised DATA step and check the log, you see a note indicating that invalid
data appears for the variable RecHR in line 14 of the raw data file, columns 35–37.

This note is followed by a column ruler and the actual data line that contains the invalid value for
RecHR.

NOTE: Invalid data for RecHR in line 14 35-37.

RULE: ----+----1----+----2----+----3----+----4- ---+----5---

14 2575 Quigley, M 74 152 Q13 11 26 I 45

ID=2575 Name=Quigley, M RestHR=74 MaxHR=152 RecHR=. TimeMin=11

TimeSec=26 Tolerance=I _ERROR_=1

N=14

NOTE: 21 records were read from the infile TESTS.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 21 observation s

 and 8 variables.

NOTE: DATA statement used 0.13 seconds

 120

The value Q13 is a data-entry error. It was entered incorrectly for the variable RecHR.

RecHR is a numeric variable, but Q13 is not a valid number. So RecHR is assigned a missing
value, as indicated in the log. Because RecHR is numeric, the missing value is represented with a
period.

Notice, though, that the DATA step does not fail as a result of the invalid data but continues to
execute. Unlike syntax errors, invalid data errors do not cause SAS to stop processing a program.

Assuming you have a way to edit the file and can justify a correction, you can correct the invalid
value and re-run the DATA step. If you did this, the log would then show that the data set
Clinic.Stress was created with 21 observations, 8 variables, and no messages about invalid
data.

NOTE: The infile TESTS2 is:

 File Name=C:\My SAS Files\tests2.dat,

 RECFM=V,LRECL=256

NOTE: 21 records were read from the infile TESTS2.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 21 observation s

 and 8 variables.

NOTE: DATA statement used 0.14 seconds

After correcting the raw data file, you can list the data again to verify that it is correct.

 proc print data=clinic.stress;

 run;

Ob
s

ID Name Rest
Hr

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

1 245
8

Murray, W 72 185 128 12 38 D

2 246
2

Almers, C 68 171 133 10 5 I

3 250
1

Bonaventu
re, T

78 177 139 11 13 I

4 252
3

Johnson,
R

69 162 114 9 42 S

5 253
9

LaMance,
K

75 168 141 11 46 D

6 254
4

Jones, M 79 187 136 12 26 N

7 255 Reberson, 69 158 139 15 41 D

 121

Ob
s

ID Name Rest
Hr

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

2 P

8 255
5

King, E 70 167 122 13 13 I

9 256
3

Pitts, D 71 159 116 10 22 S

10 256
8

Eberhardt,
S

72 182 122 16 49 N

11 257
1

Nunnelly,
A

65 181 141 15 2 I

12 257
2

Oberon, M 74 177 138 12 11 D

13 257
4

Peterson,
V

80 164 137 14 9 D

14 257
5

Quigley, M 74 152 113 11 26 I

15 257
8

Cameron,
L

75 158 108 14 27 I

Whenever you use the DATA step to read raw data, remember the steps that you followed in this
chapter, which help ensure that you don't waste resources when accessing data:
� Write the DATA step using the OBS= option in the INFILE statement.
� Submit the DATA step.
� Check the log for messages.
� View the resulting data set.
� Remove the OBS= option and re-submit the DATA step.
� Check the log again.
� View the resulting data set again.

Creating and Modifying Variables

So far in this book, you've read existing data. But sometimes existing data doesn't provide the
information that you need. To modify existing values or to create new variables, you can use an
assignment statement in any DATA step.

General form, assignment statement:

variable=expression;

where
� variable names a new or existing variable
� expression is any valid SAS expression.

Note The assignment statement is one of the few SAS statements that doesn't begin

with a keyword.

 122

For example, here is an assignment statement that assigns the character value Toby
Witherspoon to the variable Name:

 Name='Toby Witherspoon';

SAS Expressions

You use SAS expressions in assignment statements and many other SAS programming
statements to
� transform variables
� create new variables
� conditionally process variables
� calculate new values
� assign new values.

An expression is a sequence of operands and operators that form a set of instructions. The
instructions are performed to produce a new value:
� Operands are variable names or constants. They can be numeric, character, or both.
� Operators are special-character operators, grouping parentheses, or functions. You can

learn about functions in Chapter 14, Transforming Data with SAS Functions .

Using Operators in SAS Expressions

To perform a calculation, you use arithmetic operators . The table below lists arithmetic
operators.

Operator Action Example Priority

- negative prefix negative=-x; I

** exponentiation raise=x**y; I

* multiplication mult=x*y; II

/ division divide=x/y; II

+ addition sum=x+y; III

- subtraction diff=x-y; III

When you use more than one arithmetic operator in an expression,
� operations of priority I are performed before operations of priority II, and so on
� consecutive operations that have the same priority are performed

o from right to left within priority I
o from left to right within priorities II and III

� you can use parentheses to control the order of operations.

Warning When a value that is used with an arithmetic operator is missing, the

result of the expression is missing . The assignment statement assigns
a missing value to a variable if the result of the expression is missing.

You use the following comparison operators to express a condition.

Operator Meaning Example

= or eq equal to name='Jones, C.'

^= or ne not equal to temp ne 212

 123

Operator Meaning Example

> or gt greater than income>20000

< or lt less than partno lt "BG05"

>= or ge greater than or equal to id>='1543'

<= or le less than or equal to pulse le 85

To link a sequence of expressions into compound expressions, you use logical operators ,
including the following.

Operator Meaning

AND or & and, both. If both expressions are true, then the compound
expression is true.

OR or | or, either. If either expression is true, then the compound expression
is true.

More Examples of Assignment Statements

The assignment statement in the DATA step below creates a new variable, TotalTime , by
multiplying the values of TimeMin by 60 and then adding the values of TimeSec .

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

run;

SAS Data Set Clinic.Stress (Partial Listing)

ID Name Rest
HR

Max
HR

Rec
HR

Time
Min

Time
Sec

Tolera
nce

TotalTi
me

24
58

Murray,
W

72 185 128 12 38 D 758

24
62

Almers, C 68 171 133 10 5 I 605

25
01

Bonavent
ure, T

78 177 139 11 13 I 673

25
23

Johnson,
R

69 162 114 9 42 S 582

25
39

LaMance,
K

75 168 141 11 46 D 706

 124

The expression can also contain the variable name that is on the left side of the equal sign, as the
following assignment statement shows. This statement re-defines the values of the variable
RestHR as 10 percent higher.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 resthr=resthr+(resthr*.10);

run;

When a variable name appears on both sides of the equal sign, the original value on the right
side is used to evaluate the expression. The result is assigned to the variable on the left side of
the equal sign.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 resthr=resthr+(resthr*.10);

run; ^ ^

 result original value

Date Constants

You can assign date values to variables in assignment statements by using date constants . To
represent a constant in SAS date form, specify the date as 'ddmmmyy' or 'ddmmmyyyy', followed
by a D.

General form, date constant:

'ddmmm<yy>yy' D

or

"ddmmm<yy>yy" D

where
� dd is a one- or two-digit value for the day
� mmm is a three-letter abbreviation for the month (JAN, FEB, and so on)
� yy or yyyy is a two- or four-digit value for the year, respectively.

Note Be sure to enclose the date in quotation marks.

 125

Example

In the following program, the second assignment statement assigns a date value to the variable
TestDate .

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-3 3

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 TestDate='01jan2000'd;

run;

Note You can also use SAS time constants and SAS datetime constants in

assignment statements.

Time='9:25't;

DateTime='18jan2005:9:27:05'dt;

Subsetting Data

As you read your data, you can subset it by processing only those observations that meet a
specified condition. To do this, you can use a subsetting IF statement in any DATA step.

The subsetting IF statement causes the DATA step to continue processing only those raw data
records or observations that meet the condition of the expression specified in the IF statement.
The resulting SAS data set or data sets contain a subset of the original external file or SAS data
set.

General form, subsetting IF statement:

IF expression;

where expression is any valid SAS expression.
� If the expression is true , the DATA step continues to process that record or observation.
� If the expression is false , no further statements are processed for that record or

observation, and control returns to the top of the DATA step.

For example, the subsetting IF statement below selects only observations whose values for
Tolerance are D. The IF statement is positioned in the DATA step so that other statements do
not need to process unwanted observations.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-3 3

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 126

 TotalTime=(timemin*60)+timesec;

run;

Because Tolerance is a character variable, the value D must be enclosed in quotation marks,
and it must be the same case as in the data set.

Note See the SAS documentation for your operating environment for a comparison of

the WHERE and subsetting IF statements when they are used in the DATA
step.

Reading Instream Data

Throughout this chapter, our program has contained an INFILE statement that identifies an
external file to read.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

However, you can also read instream data lines that you enter directly in your SAS program,
rather than data that is stored in an external file. Reading instream data is extremely helpful if you
want to create data and test your programming statements on a few observations that you can
specify according to your needs.

To read instream data, you use
� a DATALINES statement as the last statement in the DATA step (except for the RUN

statement) and immediately preceding the data lines
� a null statement (a single semicolon) to indicate the end of the input data.

data clinic.stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 datalines;

 .

 .

 .

data lines go here

 .

 .

 .

;

General form, DATALINES statement:

 127

DATALINES;

Note You can use only one DATALINES statement in a DATA step. Use separate

DATA steps to enter multiple sets of data.

Note You can also use CARDS; as the last statement in a DATA step (except for the

RUN statement) and immediately preceding the data lines. The CARDS
statement is an alias for the DATALINES statement.

Note If your data contains semicolons, use the DATALINES4 statement plus a null

statement that consists of four semicolons (;;;;) to indicate the end of the input
data.

Example

To read the data for the treadmill stress tests as instream data, you can submit the following
program:

data clinic.stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-3 3

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

 datalines;

 2458 Murray, W 72 185 128 12 38 D

 2462 Almers, C 68 171 133 10 5 I

 2501 Bonaventure, T 78 177 139 11 13 I

 2523 Johnson, R 69 162 114 9 42 S

 2539 LaMance, K 75 168 141 11 46 D

 2544 Jones, M 79 187 136 12 26 N

 2552 Reberson, P 69 158 139 15 41 D

 2555 King, E 70 167 122 13 13 I

 2563 Pitts, D 71 159 116 10 22 S

 2568 Eberhardt, S 72 182 122 16 49 N

 2571 Nunnelly, A 65 181 141 15 2 I

 2572 Oberon, M 74 177 138 12 11 D

 2574 Peterson, V 80 164 137 14 9 D

 2575 Quigley, M 74 152 113 11 26 I

 2578 Cameron, L 75 158 108 14 27 I

 2579 Underwood, K 72 165 127 13 19 S

 2584 Takahashi, Y 76 163 135 16 7 D

 2586 Derber, B 68 176 119 17 35 N

 2588 Ivan, H 70 182 126 15 41 N

 2589 Wilcox, E 78 189 138 14 57 I

 2595 Warren, C 77 170 136 12 10 S

 128

 ;

Warning Notice that you do not need a RUN statement following the null statement

(the semicolon after the data lines). The null statement functions as a step
boundary when the DATALINES statement is used, so the DATA step is
executed as soon as SAS encounters it. If you do place a RUN statement
after the null statement, any statements between the null statement and the
RUN statement are not executed as part of the DATA step.

Steps to Create a Raw Data File

Look at the SAS program and SAS data set created earlier in this chapter.

data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-3 3

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

SAS Data Set Clinic.Stress

ID Name Rest
HR

Max
HR

Rec
HR

Time
Min

TimeS
ec

Tolera
nce

TotalTi
me

24
58

Murray,
W

72 185 128 12 38 D 758

25
39

LaManc
e, K

75 168 141 11 46 D 706

25
52

Rebers
on, P

69 158 139 15 41 D 941

25
72

Oberon,
M

74 177 138 12 11 D 731

25
74

Peterso
n, V

80 164 137 14 9 D 849

25
84

Takaha
shi, Y

76 163 135 16 7 D 967

As you can see, the data set has been modified with SAS statements. If you wanted to write the
new observations to a raw data file, you could reverse the process that you've been following and
write out the observations from a SAS data set as records or lines to a new raw data file.

Using the_NULL_ Keyword

Because the goal of your SAS program is to create a raw data file and not a SAS data set, it is
inefficient to list a data set name in the DATA statement. Instead, use the keyword _NULL_,
which enables you to use the DATA step without actually creating a SAS data set. A SET
statement specifies the SAS data set that you want to read from.

 data _null_;

 129

 set clinic.stress;

The next step is to specify the output file.

Specifying the Raw Data File

You use the FILE and PUT statements to write the observations from a SAS data set to a raw
data file, just as you used the INFILE and INPUT statements to create a SAS data set. These two
sets of statements work almost identically.

When writing observations to a raw data file, use the FILE statement to specify the output file.

General form, FILE statement:

FILE file-specification;

where file-specification can take the form fileref to name a previously defined file reference or
'filename' to point to the actual name and location of the file.

For example, if you want to read the Clinic.Stress data set to a raw data file that is referenced by
the fileref Newdat , you would begin your program with the following SAS statements.

data _null_;

 set clinic.stress;

 file newdat;

Instead of identifying the raw data file with a SAS fileref, you can choose to specify the entire
filename and location in the FILE statement. For example, the following FILE statement points
directly to the C:\Clinic\Patients\Stress.dat file. Note that the path specifying the filename and
location must be enclosed in quotation marks.

data _null_;

 set clinic.stress;

 file 'c:\clinic\patients\stress.dat';

Describing the Data

Whereas the FILE statement specifies the output file, the PUT statement describes the lines to
write to the raw data file.

General form, PUT statement using column output:

PUT variable startcol-endcol . . .;

where
� variable is the name of the variable whose value is written
� startcol indicates where in the line to begin writing the value
� endcol indicates where in the line to end the value.

 130

In general, the PUT statement mirrors the capabilities of the INPUT statement. In this case you
are working with column output. Therefore, you need to specify the variable name, starting
column, and ending column for each field that you want to create. Because you are creating raw
data, you don't need to follow character variable names with a dollar sign ($).

data _null_;

 set clinic.stress;

 file 'c:\clinic\patients\stress.dat';

 put id 1-4 name 6-25 resthr 27-29 maxhr 31-33

 rechr 35-37 timemin 39-40 timesec 42-43

 tolerance 45 totaltime 47-49;

run;

SAS Data Set Clinic.Stress

ID Name Rest
HR

Max
HR

Rec
HR

Time
Min

TimeS
ec

Tolera
nce

TotalTi
me

24
58

Murray,
W

72 185 128 12 38 D 758

25
39

LaManc
e, K

75 168 141 11 46 D 706

25
52

Rebers
on, P

69 158 139 15 41 D 941

25
72

Oberon,
M

74 177 138 12 11 D 731

25
74

Peterso
n, V

80 164 137 14 9 D 849

25
84

Takaha
shi, Y

76 163 135 16 7 D 967

The resulting raw data file would look like this:

In later chapters you'll learn how to use INPUT and PUT statements to read and write raw data in
other forms and record types.

Note If you do not execute a FILE statement before a PUT statement in the current

iteration of the DATA step, then SAS writes the lines to the SAS log. If you
specify the PRINT option in the FILE statement, before the PUT statement,
then SAS writes the lines to the procedure output file.

Additional Features

In this chapter, you learned to read raw data by writing an INPUT statement that uses column
input. You also learned how to write to a raw data file by using the FILE statement with column

 131

input. However, column input is appropriate only in certain situations. When you use column
input, your data must be
� standard character and numeric values . If the raw data file contains nonstandard

values, then you need to use formatted input, another style of input. To learn about formatted
input, see Chapter 17, Reading Raw Data in Fixed Fields .

� in fixed fields . That is, values for a particular variable must be in the same location in all
records. If your raw data file contains values that are not in fixed fields, then you need to use
list input. To learn about list input, see Chapter 18, Reading Free-Format Data .

Other forms of the INPUT statement enable you to read
� nonstandard data values such as hexadecimal, packed decimal, SAS date values, and

monetary values that contain dollar signs and commas
� free-format data (data that is not in fixed fields)
� implied decimal points
� variable-length data values
� variable-length records
� different record types.

Summary

Text Summary

Raw Data Files

A raw data file is an external file whose records contain data values that are organized in fields.
The raw data files in this chapter contain fixed fields.

Steps to Create a SAS Data Set

You need to follow several steps to create a SAS data set using raw data.
1. Reference the raw data file to be read.
2. Name the SAS data set.
3. Identify the location of the raw data.
4. Describe the data values to be read.

Referencing a SAS Library

To begin your program, you might need to use a LIBNAME statement to reference the SAS
library in which your data set will be stored.

Referencing a Raw Data File

Before you can read your raw data, you must reference the raw data file by creating a fileref. Just
as you assign a libref by using a LIBNAME statement, you assign a fileref by using a FILENAME
statement.

Writing a DATA Step Program

The DATA statement indicates the beginning of the DATA step and names the SAS data set(s) to
be created.

Next, you specify the raw data file by using the INFILE statement. The OBS= option in the INFILE
statement enables you to process a specified number of observations.

 132

This chapter teaches column input, the most common input style. Column input specifies actual
column locations for data values. The INPUT statement describes the raw data to be read and
placed into the SAS data set.

Submitting the DATA Step Program

When you submit the program, you can use the OBS= option with the INFILE statement to verify
that the correct data is being read before reading the entire data file.

After you submit the program, view the log to check the DATA step processing. You can then list
the data set by using the PROC PRINT procedure.

After you've checked the log and verified your data, you can modify the DATA step to read the
entire raw data file by removing the OBS= option from the INFILE statement.

If you are working with a raw data file that contains invalid data, the DATA step continues to
execute. Unlike syntax errors, invalid data errors do not cause SAS to stop processing a program.
If you have a way to edit the invalid data, it's best to correct the problem and re-run the DATA
step.

Creating and Modifying Variables

To modify existing values or to create new variables, you can use an assignment statement in
any DATA step. Within assignment statements, you can specify any SAS expression .

You can use date constants to assign dates in assignment statements. You can also use SAS
time constants and SAS datetime constants in assignment statements.

Subsetting Data

To process only observations that meet a specified condition, use a subsetting IF statement in
the DATA step.

Reading Instream Data

To read instream data lines instead of an external file, use a DATALINES statement or a
CARDS statement and enter data directly in your SAS program. Omit the RUN statement at the
end of the DATA step.

Creating a Raw Data File

When the goal of your SAS program is to create a raw data file and not a SAS data set, it is
inefficient to list a data set name in the DATA statement. Instead use the keyword _NULL_ , which
allows the power of the DATA step without actually creating a SAS data set. A SET statement
specifies the SAS data set that you want to read from.

You can use the FILE and PUT statements to write out the observations from a SAS data set to a
raw data file the same way you used the INFILE and INPUT statements to create a SAS data set.
These two sets of statements work almost identically.

Points to Remember
� LIBNAME and FILENAME statements are global . Librefs and filerefs remain in effect

until you change them, cancel them, or end your SAS session.

 133

� For each field of raw data that you read into your SAS data set, you must specify the
following in the INPUT statement: a valid SAS variable name , a type (character or numeric),
a starting column , and if necessary, an ending column .

� When you use column input, you can read any or all fields from the raw data file, read the
fields in any order, and specify only the starting column for variables whose values occupy
only one column.

� Column input is appropriate only in some situations. When you use column input, your
data must be standard character and numeric values, and these values must be in fixed
fields . That is, values for a particular variable must be in the same location in all records.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which SAS statement associates the fileref Crime wi th the raw data file
C:\States\Data\Crime?

a. filename crime 'c:\states\data\crime';
b. filename crime c:\states\data\crime;
c. fileref crime 'c:\states\data\crime';
d. filename 'c:\states\data\crime' crime;

2. Filerefs remain in effect until
a. you change them.
b. you cancel them.
c. you end your SAS session.
d. all of the above

3. Which statement identifies the name of a raw data f ile to be read with the fileref
Products and specifies that the DATA step read only records 1–15?

a. infile products obs 15;
b. infile products obs=15;
c. input products obs=15;
d. input products 1-15;

4. Which of the following programs correctly writes th e observations from the data
set below to a raw data file?
SAS Data Set Work.Patients

ID Sex Age Height Weight Pulse

2304 F 16 61 102 100

1128 M 43 71 218 76

4425 F 48 66 162 80

1387 F 57 64 142 70

9012 F 39 63 157 68

6312 M 52 72 240 77

5438 F 42 62 168 83

3788 M 38 73 234 71

 134

9125 F 56 64 159 70

3438 M 15 66 140 67

a. data _null_;

b. set work.patients;

c. infile 'c:\clinic\patients\referrals.dat';

d. input id 1-4 sex 6 age 8-9 height 11-12

e. weight 14-16 pulse 18-20;

f. run;
g.

h. data referrals.dat;

i. set work.patients;

j. input id 1-4 sex 6 age 8-9 height 11-12

k. weight 14-16 pulse 18-20;

l. run;
m.

n. data _null_;

o. set work.patients;

p. file c:\clinic\patients\referrals.dat;

q. put id 1-4 sex 6 age 8-9 height 11-12

r. weight 14-16 pulse 18-20;

s. run;
t.

u. data _null_;

v. set work.patients;

w. file 'c:\clinic\patients\referrals.dat';

x. put id 1-4 sex 6 age 8-9 height 11-12

y. weight 14-16 pulse 18-20;

z. run;

5. Which raw data file can be read using column input?
a.

b.

 135

c.

d. all of the above

6. Which program creates the output shown below?

Obs ID LastName FirstName City

1 3427 Chen Steve Raleigh

2 1436 Davis Lee Atlanta

3 2812 King Vicky Memphis

4 1653 Sanchez Jack Atlanta

a. data work.salesrep;

b. infile empdata;

c. input ID $ 1-4 LastName $ 6-12

d. FirstName $ 14-18 City $ 20-29;

e. run;

f. proc print data=work.salesrep;

g. run;

h. data work.salesrep;

i. infile empdata;

j. input ID $ 1-4 Name $ 6-12

k. FirstName $ 14-18 City $ 20-29;

l. run;

m. proc print data=work.salesrep;

n. run;

o. data work.salesrep;

 136

p. infile empdata;

q. input ID $ 1-4 name1 $ 6-12

r. name2 $ 14-18 City $ 20-29;

s. run;

t. proc print data=work.salesrep;

u. run;
v. all of the above

7. Which statement correctly reads the fields in the f ollowing order:
StockNumber, Price, Item, Finish, Style ?

Field Name Start Column End Column Data Type

StockNumber 1 3 character

Finish 5 9 character

Style 11 18 character

Item 20 24 character

Price 27 32 numeric

a. input StockNumber $ 1-3 Finish $ 5-9 Style $ 11-18

b. Item $ 20-24 Price 27-32;

c. input StockNumber $ 1-3 Price 27-32

d. Item $ 20-24 Finish $ 5-9 Style $ 11-18;

e. input $ StockNumber 1-3 Price 27-32

f. $ Item 20-24 $ Finish 5-9 $ Style 11-18;

g. input StockNumber $ 1-3 Price $ 27-32

h. Item $ 20-24 Finish $ 5-9 Style $ 11-18;

8. Which statement correctly re-defines the values of the variable Income as 100
percent higher?

a. income=income*1.00;
b. income=income+(income*2.00);
c. income=income*2;
d. income= *2;

9. Which program correctly reads instream data?

a. data finance.newloan;

b. input datalines;

c. if country='JAPAN';

d. MonthAvg=amount/12;

e. 1998 US CARS 194324.12

 137

f. 1998 US TRUCKS 142290.30

g. 1998 CANADA CARS 10483.44

h. 1998 CANADA TRUCKS 93543.64

i. 1998 MEXICO CARS 22500.57

j. 1998 MEXICO TRUCKS 10098.88

k. 1998 JAPAN CARS 15066.43

l. 1998 JAPAN TRUCKS 40700.34

m. ;

n. data finance.newloan;

o. input Year 1-4 Country $ 6-11

p. Vehicle $ 13-18 Amount 20-28;

q. if country='JAPAN';

r. MonthAvg=amount/12;

s. datalines;

t. run;

u. data finance.newloan;

v. input Year 1-4 Country 6-11

w. Vehicle 13-18 Amount 20-28;

x. if country='JAPAN';

y. MonthAvg=amount/12;

z. datalines;

aa. 1998 US CARS 194324.12

bb. 1998 US TRUCKS 142290.30

cc. 1998 CANADA CARS 10483.44

dd. 1998 CANADA TRUCKS 93543.64

ee. 1998 MEXICO CARS 22500.57

ff. 1998 MEXICO TRUCKS 10098.88

gg. 1998 JAPAN CARS 15066.43

hh. 1998 JAPAN TRUCKS 40700.34

ii. ;

jj. data finance.newloan;

kk. input Year 1-4 Country $ 6-11

ll. Vehicle $ 13-18 Amount 20-28;

mm. if country='JAPAN';

nn. MonthAvg=amount/12;

oo. datalines;

pp. 1998 US CARS 194324.12

qq. 1998 US TRUCKS 142290.30

rr. 1998 CANADA CARS 10483.44

ss. 1998 CANADA TRUCKS 93543.64

 138

tt. 1998 MEXICO CARS 22500.57

uu. 1998 MEXICO TRUCKS 10098.88

vv. 1998 JAPAN CARS 15066.43

ww. 1998 JAPAN TRUCKS 40700.34

xx. ;

10. Which SAS statement subsets the raw data shown belo w so that only the
observations in which Sex (in the second field) has a value of F are processed?

a. if sex=f;
b. if sex=F;
c. if sex='F';
d. a or b

Answers

1. Correct answer: a

Before you can read your raw data, you must reference the raw data file by creating a fileref.
You assign a fileref by using a FILENAME statement in the same way that you assign a libref
by using a LIBNAME statement.

2. Correct answer: d

Like LIBNAME statements, FILENAME statements are global; they remain in effect until you
change them, cancel them, or end your SAS session.

3. Correct answer: b

You use an INFILE statement to specify the raw data file to be read. You can specify a fileref
or an actual filename (in quotation marks). The OBS= option in the INFILE statement enables
you to process only records 1 through n.

4. Correct answer: d

The keyword _NULL_ in the DATA statement enables you to use the power of the DATA step
without actually creating a SAS data set. You use the FILE and PUT statements to write out
the observations from a SAS data set to a raw data file. The FILE statement specifies the raw
data file and the PUT statement describes the lines to write to the raw data file. The filename

 139

and location that are specified in the FILE statement must be enclosed in quotation marks.

5. Correct answer: b

Column input is appropriate only in some situations. When you use column input, your data
must be standard character or numeric values, and they must be in fixed fields. That is,
values for a particular variable must be in the same location in all records.

6. Correct answer: a

The INPUT statement creates a variable using the name that you assign to each field.
Therefore, when you write an INPUT statement, you need to specify the variable names
exactly as you want them to appear in the SAS data set.

7. Correct answer: b

You can use column input to read fields in any order. You must specify the variable name to
be created, identify character values with a $, and name the correct starting column and
ending column for each field.

8. Correct answer: c

To re-define the values of the variable Income in an Assignment statement, you specify the
variable name on the left side of the equal sign and an appropriate expression including the
variable name on the right side of the equal sign.

9. Correct answer: d

To read instream data, you specify a DATALINES statement and data lines, followed by a
null statement (single semicolon) to indicate the end of the input data. Program a contains no
DATALINES statement, and the INPUT statement doesn't specify the fields to read. Program
b contains no data lines, and the INPUT statement in program c doesn't specify the
necessary dollar signs for the character variables Country and Vehicle .

10. Correct answer: c

To subset data, you can use a subsetting IF statement in any DATA step to process only
those observations that meet a specified condition. Because Sex is a character variable, the
value F must be enclosed in quotation marks and must be in the same case as in the data
set.

 140

Chapter 6: Understanding DATA Step Processing

Overview

Introduction

In Chapter 5, Creating SAS Data Sets from Raw Data , you learned how to read data, perform
basic modifications, and create a new SAS data set.

This chapter teaches you what happens "behind the scenes" when the DATA step reads raw
data. You'll examine the program data vector , which is a logical framework that SAS uses when
creating SAS data sets.

Understanding how the program operates can help you to anticipate how variables will be created
and processed, to plan your modifications, and to interpret and debug program errors. It also
gives you useful strategies for preventing and correcting common DATA step errors.

Objectives

In this chapter, you learn to
� identify the two phases that occur when a DATA step is processed
� interpret automatic variables
� identify the processing phase in which an error occurs
� debug SAS DATA steps
� test programs by limiting the number of observations that are created
� flag errors in the SAS log.

Writing Basic DATA Steps

In Chapter 5, Creating SAS Data Sets from Raw Data , you learned how to write a DATA step to
create a permanent SAS data set from raw data that is stored in an external file.

 141

data clinic.stress;

 infile tests obs = 8;

 input ID 1-4 Name $ 6-25 RestHR 27-29

 MaxHR 31-33 RecHR 35-37

 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

run;

You learned how to submit the DATA step and how to check the log to see whether the step ran
successfully.
SAS Log

NOTE: The infile TESTS is:

 FILENAME=may/t1/rawdata.dat

NOTE: 8 records were read from the infile TESTS.

NOTE: The data set CLINIC.STRESS has 8

 observations and 8 variables.

NOTE: The DATA statement used 0:00:07.00 real

 0:00:07.10 cpu.

You also learned how to display the contents of the data set with the PRINT procedure.

proc print data=clinic.stress;

run;

Ob
s

ID Name Rest
Hr

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

1 245
8

Murray, W 72 185 128 12 38 D

2 246
2

Almers, C 68 171 133 10 5 I

3 250
1

Bonaventu
re, T

78 177 139 11 13 I

4 252
3

Johnson,
R

69 162 114 9 42 S

5 253
9

LaMance,
K

75 168 141 11 46 D

 142

Ob
s

ID Name Rest
Hr

Max
HR

Rec
HR

TimeM
in

TimeS
ec

Toleran
ce

6 254
4

Jones, M 79 187 136 12 26 N

7 255
2

Reberson,
P

69 158 139 15 41 D

8 255
5

King, E 70 167 122 13 13 I

How SAS Processes Programs

When you submit a DATA step, SAS processes the DATA step and then creates a new SAS data
set. Let's see exactly how that happens.

A SAS DATA step is processed in two phases:

� During the compilation phase , each statement is scanned for syntax errors. Most syntax

errors prevent further processing of the DATA step. When the compilation phase is
complete, the descriptor portion of the new data set is created.

� If the DATA step compiles successfully, then the execution phase begins. During the
execution phase, the DATA step reads and processes the input data. The DATA step
executes once for each record in the input file, unless otherwise directed.

The diagram below shows the flow of DATA step processing for reading raw data. We'll examine
both the compilation phase and the execution phase in this chapter.

Let's start with the compilation phase.

Compilation Phase

Input Buffer

At the beginning of the compilation phase, the input buffer (an area of memory) is created to
hold a record from the external file. The input buffer is created only when raw data is read, not

 143

when a SAS data set is read. The term input buffer refers to a logical concept; it is not a physical
storage area.

Program Data Vector

After the input buffer is created, the program data vector is created. The program data vector is
the area of memory where SAS builds a data set, one observation at a time. Like the term input
buffer , the term program data vector refers to a logical concept.

The program data vector contains two automatic variables that can be used for processing but
which are not written to the data set as part of an observation.
� _N_ counts the number of times that the DATA step begins to execute.
� _ERROR_ signals the occurrence of an error that is caused by the data during execution.

The default value is 0, which means there is no error. When one or more errors occur, the
value is set to 1.

Syntax Checking

During the compilation phase, SAS also scans each statement in the DATA step, looking for
syntax errors. Syntax errors include
� missing or misspelled keywords
� invalid variable names
� missing or invalid punctuation
� invalid options.

Data Set Variables

As the INPUT statement is compiled, a slot is added to the program data vector for each variable
in the new data set. Usually, variable attributes such as length and type are determined the first
time a variable is encountered.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Any variables that are created with an assignment statement in the DATA step are also added to
the program data vector. For example, the assignment statement below creates the variable
Total . As the statement is compiled, the variable is added to the program data vector. The
attributes of the variable are determined by the expression in the statement. Because the
expression produces a numeric value, Total is defined as a numeric variable and is assigned
the default length of 8.

 144

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Descriptor Portion of the SAS Data Set

At the bottom of the DATA step (in this example, when the RUN statement is encountered), the
compilation phase is complete, and the descriptor portion of the new SAS data set is created. The
descriptor portion of the data set includes
� the name of the data set
� the number of observations and variables
� the names and attributes of the variables.
Data Set Descriptor

Data Set Name: PERM.UPDATE Observations:
0

Member Type: DATA Variables:
5

Engine: V9 Indexes:
0

Created: 14:38 Thursday, June 20, 2002 Observation Length:
48

Last Modified: 14:38 Thursday, June 20, 2002 Deleted
Observations: 0

Protection: Compressed:
NO

Data Set Type: Sorted:
NO

Label:

 -----Engine/Host Dependent Inform ation-----

Data Set Page Size: 4096

Number of Data Set Pages: 1

First Data Page: 1

Max Obs per Page: 84

Obs in First Data Page: 0

Number of Data Set Repairs: 0

File Name: C:\WINNT\My SAS Files\V 8\update.sas7bdat

Release Created: 9.0000M0

 145

Host Created: WIN_NT

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Po s

 4 BackOrd Num 8 8

 2 IDnum Char 5 37

 3 InStock Num 8 0

 1 Item Char 13 24

 5 Total Num 8 16

At this point, the data set contains the five variables that are defined in the input data set and in
the assignment statement. Remember, _N_ and _ERROR_ are not written to the data set. There
are no observations because the DATA step has not yet executed. During execution, each raw
data record is processed and is then written to the data set as an observation.

Note For additional information about assigning attributes to variables, see the SAS

documentation for your operating environment.

Summary of the Compilation Phase

Let's review the compilation phase.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

During the compilation phase, the input buffer is created to hold a record from the external file.

The program data vector is created to hold the current observation.

The descriptor portion of the SAS data set is created.
Data Set Descriptor (Partial)

Data Set Name: PERM.UPDATE

Member Type: DATA

Engine: V9

Created: 11:25 Friday, June 21, 2002

 146

Observations: 0

Variables: 5

Indexes: 0

Observation Length: 30

Execution Phase

After the DATA step is compiled, it is ready for execution. During the execution phase, the data
portion of the data set is created. The data portion contains the data values.

During execution, each record in the input raw data file is read, stored in the program data vector,
and then written to the new data set as an observation. The DATA step executes once for each
record in the input file, unless otherwise directed by additional statements.

Example

The following DATA step reads values from the file Invent and executes nine times because
there are nine records in the file.

data perm.update;

 infile invent;

 147

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Initializing Variables

At the beginning of the execution phase, the value of _N_ is 1. Because there are no data errors,
the value of _ERROR_ is 0.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

The remaining variables are initialized to missing. Missing numeric values are represented by
periods, and missing character values are represented by blanks.

Input Data

Next, the INFILE statement identifies the location of the raw data.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Input Pointer

When an INPUT statement begins to read data values from a record that is held in the input
buffer, it uses an input pointer to keep track of its position (the input pointer is represented by an
arrow in the examples in this book).

The input pointer starts at column 1 of the first record, unless otherwise directed. As the INPUT
statement executes, the raw data in columns 1–13 is read and is assigned to Item in the
program data vector.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

 148

run;

Notice that the input pointer now rests on column 14. With column input, the pointer moves as far
as the INPUT statement instructs it, and it stops in the column immediately following the last one
read.

Next, the data in columns 15–19 is read and is assigned to IDnum in the program data vector, as
shown below. Likewise, the INPUT statement reads the values for InStock from columns 21–
22, and it reads the values for BackOrd from columns 24–25. At the end of the INPUT statement
processing, the input pointer is in column 26.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

 149

Next, the assignment statement executes. The values for InStock and BackOrd are added to
produce the values for Total .

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

End of the DATA Step

At the end of the DATA step, several actions occur. First, the values in the program data vector
are written to the output data set as the first observation.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

SAS Data Set Perm.Update

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

Next, the value of _N_ is set to 2 and control returns to the top of the DATA step. Finally, the
variable values in the program data vector are re-set to missing. Notice that the automatic
variable _ERROR_ retains its value.

data perm.update;

 150

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Finally, the variable values in the program data vector are re-set to missing. Notice that the
automatic variables _N_ and _ERROR_ retain their values.

Note When reading variables from raw data , SAS sets the value of each variable in

the DATA step to missing at the beginning of each cycle of execution, with
these exceptions:

� variables that are named in a RETAIN statement
� variables that are created in a SUM statement
� data elements in a _TEMPORARY_ array
� any variables that are created with options in the FILE or INFILE statements
� automatic variables.

In contrast, when reading variables from a SAS data set , SAS sets the values to missing only
before the first cycle of execution of the DATA step. Thereafter, the variables retain their values
until new values become available—for example, through an assignment statement or through
the next execution of a SET or MERGE statement. Variables that are created with options in the
SET or MERGE statements also retain their values from one cycle of execution to the next. (You
will learn about reading SAS data sets and about arrays, the SET statement, and the MERGE
statement in later chapters.)

Iterations of the DATA Step

You can see that the DATA step works like a loop, repetitively executing statements to read data
values and create observations one by one. Each loop (or cycle of execution) is called an
iteration . At the beginning of the second iteration, the value of _N_ is set to 2, and _ERROR_ is
still 0. Notice that the input pointer rests in column 1 of the second record.

 151

As the INPUT statement executes for the second time, the values from the second record are
held in the input buffer and then read into the program data vector.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Next, the value for Total is calculated based on the current values for InStock and BackOrd .
The RUN statement indicates the end of the DATA step.

 152

At the bottom of the DATA step, the values in the program data vector are written to the data set
as the second observation.

SAS Data Set Perm.Update

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

6 Glass Mugs SB082 6 12 18

Next, the value of _N_ is set to 3, control returns to the top of the DATA step, and the values for
Item, IDnum, InStock , BackOrd , and Total are re-set to missing.

End-of-File Marker

The execution phase continues in this manner until the end-of-file marker is reached in the raw
data file. When there are no more records in the raw data file to be read, the data portion of the
new data set is complete.

SAS Data Set Perm.Update

 153

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

6 Glass Mugs SB082 6 12 18

Glass Tray BQ049 12 6 18

Padded Hangrs MN256 15 20 35

Jewelry Box AJ498 23 0 23

Red Apron AQ072 9 12 21

Crystal Vase AQ672 27 0 27

Brass Clock LS930 21 0 21

Picnic Basket AN910 2 10 12

Remember, the order in which variables are defined in the DATA step determines the order in
which the variables are stored in the data set. The DATA step below, which reverses the order of
Item and IDnum, produces a different data set from the same raw data.

data perm.update;

 infile invent;

 input IDnum $ 15-19 Item $ 1-13 � reversed

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

SAS Data Set Perm.Update

IDnum Item InStock BackOrd Total

LG088 Bird Feeder 3 20 23

SB082 6 Glass Mugs 6 12 18

BQ049 Glass Tray 12 6 18

MN256 Padded Hangrs 15 20 35

AJ498 Jewelry Box 23 0 23

AQ072 Red Apron 9 12 21

AQ672 Crystal Vase 27 0 27

LS930 Picnic Basket 21 0 21

AN910 Brass Clock 2 10 12

--reversed--

Summary of the Execution Phase

You've seen how the DATA step iteratively reads records in the raw data file. Now take a minute
to review execution-phase processing.

 154

During the execution phase
� variables in the program data vector are initialized to missing before each execution of

the DATA step
� each statement is executed sequentially
� the INPUT statement reads the next record from the external file identified by the INFILE

statement, and it writes the values into the program data vector
� other statements can then further modify the current observation
� the values in the program data vector are written to the SAS data set at the end of the

DATA step
� program flow is returned to the top of the DATA step
� the DATA step is executed until the end-of-file marker is reached in the external file.

End of the Execution Phase

At the end of the execution phase, the SAS log confirms that the raw data file was read, and it
displays the number of observations and variables in the data set.
SAS Log (Partial)

NOTE: 9 records were read from the infile INVENT.

NOTE: The data set PERM.UPDATE has 9 observations

 and 5 variables.

You already know how to display the data set with the PRINT procedure.

proc print data=perm.update;

run;

Obs Item IDnum InStock BackOrd Total

1 Bird Feeder LG088 3 20 23

2 6 Glass Mugs SB082 6 12 18

3 Glass Tray BQ049 12 6 18

4 Padded Hangrs MN256 15 20 35

5 Jewelry Box AJ498 23 0 23

6 Red Apron AQ072 9 12 21

7 Crystal Vase AQ672 27 0 27

8 Picnic Basket LS930 21 0 21

 155

Obs Item IDnum InStock BackOrd Total

9 Brass Clock AN910 2 10 12

Debugging a DATA Step

Diagnosing Errors in the Compilation Phase

Now that you know how a DATA step is processed, you can use that knowledge to correct errors.
Many errors are detected during the compilation phase, including
� misspelled keywords and data set names
� missing semicolons
� unbalanced quotation marks
� invalid options.

During the compilation phase, SAS can interpret some syntax errors (such as the keyword DATA
misspelled as DAAT). If it cannot interpret the error, SAS
� prints the word ERROR followed by an error message in the log
� compiles but does not execute the step where the error occurred, and prints the following

message to warn you:

� NOTE: The SAS System stopped processing this step b ecause of

 errors.

Some errors are explained fully by the message that SAS prints; other error messages are not as
easy to interpret. For example, because SAS statements are in free format, when you fail to end
a SAS statement with a semicolon, SAS does not always detect the error at the point where it
occurs.

Diagnosing Errors in the Execution Phase

As you have seen, errors can occur in the compilation phase, resulting in a DATA step that is
compiled but not executed. Errors can also occur during the execution phase. When SAS detects
an error in the execution phase, the following can occur, depending on the type of error:
� A note, warning, or error message is displayed in the log.
� The values that are stored in the program data vector are displayed in the log.
� The processing of the step either continues or stops.

Example

Suppose you misspelled the fileref in the INFILE statement below. This is not a syntax error,
because SAS does not validate the file that you reference until the execution phase. During the
compilation phase, the fileref Invnt is assumed to reference some external raw data file.

data perm.update;

 infile invnt;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

 156

This error is not detected until the execution phase begins. Because there is no external file that
is referenced by the fileref Invnt , the DATA step stops processing.
SAS Log

7 data perm.: update;

08 infile invnt;

09 input Item $ 1-13 IDnum $ 15-19

10 InStock 21-22 BackOrd 24-25;

11 Total=instock+backord;

12 run;

ERROR: No logical assign for filename INVNT.

NOTE: The SAS System stopped processing this step

 because of errors.

WARNING: The data set PERM.UPDATE may be incomplete .

 When this step was stopped there were

 0 observations and 5 variables.

Because Invent is misspelled as Invnt, the statement in the DATA step that identifies the raw
data is incorrect. Note, however, that the correct number of variables was defined in the
descriptor portion of the data set.

Incorrectly identifying a variable's type is another common execution-time error. As you know, the
values for IDnum are character values. Suppose you forget to place the dollar sign ($) after the
variable's name in your INPUT statement. This is not a compile-time error, because SAS cannot
verify IDnum 's type until the data values for IDnum are read.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

 157

In this case, the DATA step completes the execution phase, and the observations are written to
the data set. However, several notes appear in the log.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

RULE: ----+----1----+----2----+----3----+----4--

07 Crystal Vase AQ672 27 0

Item=Crystal Vase IDnum=. InStock=27 BackOrd=0

Total=27 _ERROR_=1 _N_=7

NOTE: Invalid data for IDnum in line 8 15-19.

08 Picnic Basket LS930 21 0

Item=Picnic Basket IDnum=. InStock=21 BackOrd=0

Total=21 _ERROR_=1 _N_=8

NOTE: Invalid data for IDnum in line 9 15-19.

09 Brass Clock AN910 2 10

Item=Brass Clock IDnum=. InStock=2 BackOrd=10

Total=12 _ERROR_=1 _N_=9

NOTE: 9 records were read from the infile INVENT.

NOTE: The data set PERM.UPDATE has 9 observations

 and 5 variables.

Each note identifies the location of the invalid data for each observation. In this example, the
invalid data is located in columns 15–19 for all observations.

The second line in each note (excluding the Rule line) displays the raw data record. Notice that
the second field displays the values for IDnum, which are obviously character values.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

RULE: ----+----1----+----2----+----3----+----4--

07 Crystal Vase AQ672 27 0

Item=Crystal Vase IDnum=. InStock=27 BackOrd=0

Total=27 _ERROR_=1 _N_=7

NOTE: Invalid data for IDnum in line 8 15-19.

08 Picnic Basket LS930 21 0

Item=Picnic Basket IDnum=. InStock=21 BackOrd=0

Total=21 _ERROR_=1 _N_=8

NOTE: Invalid data for IDnum in line 9 15-19.

09 Brass Clock AN910 2 10

Item=Brass Clock IDnum=. InStock=2 BackOrd=10

Total=12 _ERROR_=1 _N_=9

 158

NOTE: 9 records were read from the infile INVENT.

NOTE: The data set PERM.UPDATE has 9 observations

 and 5 variables.

The third and fourth lines display the values that are stored in the program data vector. Here, the
values for IDnum are missing, although the other values have been correctly assigned to their
respective variables. Notice that _ERROR_ has a value of 1, indicating that an error has
occurred.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

RULE: ----+----1----+----2----+----3----+----4--

07 Crystal Vase AQ672 27 0

Item=Crystal Vase IDnum=. InStock=27 BackOrd=0

Total=27 _ERROR_=1 _N_=7

NOTE: Invalid data for IDnum in line 8 15-19.

08 Picnic Basket LS930 21 0

Item=Picnic Basket IDnum=. InStock=21 BackOrd=0

Total=21 _ERROR_=1 _N_=8

NOTE: Invalid data for IDnum in line 9 15-19.

09 Brass Clock AN910 2 10

Item=Brass Clock IDnum=. InStock=2 BackOrd=10

Total=12 _ERROR_=1 _N_=9

NOTE: 9 records were read from the infile INVENT.

NOTE: The data set PERM.UPDATE has 9 observations

 and 5 variables.

The PRINT procedure displays the data set, showing that the values for IDnum are missing. In
this example, the periods indicate that IDnum is a numeric variable, although it should be defined
as a character variable.

proc print data=perm.update;

run;

Obs Item IDnum InStock BackOrd Total

1 Bird Feeder . 3 20 23

2 6 Glass Mugs . 6 12 18

3 Glass Tray . 12 6 18

4 Padded Hangrs . 15 20 35

 159

Obs Item IDnum InStock BackOrd Total

5 Jewelry Box . 23 0 23

6 Red Apron . 9 12 21

7 Crystal Vase . 27 0 27

8 Picnic Basket . 21 0 21

9 Brass Clock . 2 10 12

When you read raw data with the DATA step, it's important to check the SAS log to verify that
your data was read correctly. Here is a typical message.
SAS Log

WARNING: The data set PERM.UPDATE may be incomplete .

 When this step was stopped there were

 0 observations and 5 variables.

When no observations are written to the data set, you should check to see whether your DATA
step was completely executed. Most likely, a syntax error or another error is being detected at the
beginning of the execution phase.

An invalid data message indicates that the program executed, but the data is not acceptable.
Typically, the message indicates that a variable's type has been incorrectly identified in the
INPUT statement, or that the raw data file contains some invalid data value(s).
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

Testing Your Programs

Writing a NULL Data Set

After you write or edit a DATA step, you can compile and execute your program without creating
a data set. This enables you to detect the most common errors and saves you development time.
A simple way to test a DATA step is to specify the keyword _NULL_ as the data set name in the
DATA statement.

data _null_;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

When you submit the DATA step, no data set is created, but any compilation or execution errors
are written to the log after the values of the variables are read and verified. After correcting any
errors, you can replace _NULL_ with the name of the data set that you want to create.

 160

Limiting Observations

Remember that you can use the OBS= option in the INFILE statement to limit the number of
observations that are read or created during the execution of the DATA step.

data perm.update;

 infile invent obs=10;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

When processed, this DATA step creates the Perm.Update data set with variables but with only
10 observations.

PUT Statement

When the source of program errors is not apparent, you can use the PUT statement to examine
variable values and to print your own message in the log. For diagnostic purposes, you can use
IF-THEN/ELSE statements to conditionally check for values. You can learn about IF-THEN/ELSE
statements in detail in Chapter 11, Creating and Managing Variables .

data work.test;

 infile loan;

 input Code $ 1 Amount 3-10 Rate 12-16

 Account $ 18-25 Months 27-28;

 if code='1' then type='variable';

 else if code='2' then type='fixed';

 else put 'MY NOTE: invalid value: '

 code=;

run;

In this example, if CODE does not have the expected values of 1 or 2, the PUT statement writes a
message to the log:
SAS Log

MY NOTE: invalid value: Code=V

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

General form, simple PUT statement:

PUT specification(s);

where each specification specifies what is written, how it is written, and where it is written. This
can include
� a character string

 161

� one or more data set variables
� the automatic variables _N_ and _ERROR_
� the automatic variable _ALL_

and much more. The following pages show examples of PUT specifications.

Character Strings

You can use a PUT statement to specify a character string to identify your message in the log.
The character string must be enclosed in quotation marks.

 put 'MY NOTE: The condition was met.';
SAS Log

MY NOTE: The condition was met.

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

Data Set Variables

You can use a PUT statement to specify one or more data set variables to be examined for that
iteration of the DATA step.

put 'MY NOTE: invalid value: '

 code type;
SAS Log

MY NOTE: invalid value: V FIXED

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

When you specify a variable in the PUT statement, only the value of the variable is written to the
log. To write both the variable name and its value in the log, add an equal sign (=) to the variable
name.

put 'MY NOTE: invalid value: '

 code= type=;
SAS Log

MY NOTE: invalid value: Code=V type=FIXED

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

 162

Automatic Variables

You can use a PUT statement to display the values of the automatic variables _N_ and _ERROR_.
In some cases, knowing the value of _N_ can help you locate an observation in the data set.

put 'MY NOTE: invalid value: '

 code= _n_= _error_=;
SAS Log

MY NOTE: invalid value: Code=V N=4 ERROR=0

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

You can also use a PUT statement to write all variable names and variable values, including
automatic variables, to the log. Use the _ALL_ specification.

put 'MY NOTE: invalid value: ' _all_ ;
SAS Log

MY NOTE: invalid value: Account=101-3144

 Amount=$3,500 Rate=10.50% Months=1

 Code=V type=C ERROR=0 N=4

NOTE: The data set WORK.TEST has 9 observations

 and 6 variables.

Conditional Processing

You can use a PUT statement with conditional processing (that is, with IF-THEN/ELSE
statements) to flag program errors or data that is out of range. In the example below, the PUT
statement is used to flag any missing or zero values for the variable Rate .

data finance.newcalc;

 infile newloans;

 input LoanID $ 1-4 Rate 5-8 Amount 9-19;

 if rate>0 then

 Interest=amount*(rate/12);

 else put 'DATA ERROR ' rate= _n_=;

run;

Note The PUT statement can accomplish a wide variety of tasks. This chapter shows

a few ways to use the PUT statement to help you debug a program or examine
variable values. For a complete description of the PUT statement, see the SAS
documentation for your operating environment.

Summary

Text Summary

 163

How SAS Processes Programs

A SAS DATA step is processed in two distinct phases. During the compilation phase , each
statement is scanned for syntax errors. During the execution phase , the DATA step writes
observations to the new data set.

Compilation Phase

At the beginning of the compilation phase, the input buffer and the program data vector are
created. The program data vector is the area of memory where data sets are built, one
observation at a time. Two automatic variables are also created: _N_ counts the number of DATA
step executions, and _ERROR_ signals the occurrence of an error. DATA step statements are
checked for syntax errors, such as invalid options or misspellings.

Execution Phase

During the execution phase, each record in the input file is processed, stored in the program data
vector, and then written to the new data set as an observation. The DATA step executes once for
each record in the input file, unless otherwise directed.

Diagnosing Errors in the Compilation Phase

Missing semicolons, misspelled keywords, and invalid options cause syntax errors in the
compilation phase. Detected errors are underlined and are identified with a number and message
in the log. If SAS can interpret a syntax error, then the DATA step compiles and executes; if SAS
cannot interpret the error, then the DATA step compiles but doesn't execute.

Diagnosing Errors in the Execution Phase

Illegal mathematical operations or processing a character variable as numeric causes errors in
the execution phase. Depending on the type of error, the log might show a warning and might
include invalid data from the program data vector, and the DATA step either stops or continues.

Testing Your Programs

To detect common errors and save development time, compile and execute your program without
creating observations. Specify the keyword _NULL_ as the data set name to view compilation or
execution errors without creating a data set. Or use the OBS= option in the INFILE statement to
limit the number of observations that are read or created during the DATA step. You can also use
the PUT statement to examine variable values and to generate your own message in the log.

Points to Remember
� Making, diagnosing, and resolving errors is part of the process of writing programs.

However, checking for common errors will save you time and trouble. Ensure that
o each SAS statement ends with a semicolon
o filenames are spelled correctly
o keywords are spelled correctly.

� In SAS output, missing numeric values are represented by periods, and missing
character values are left blank.

� The order in which variables are defined in the DATA step determines the order in which
the variables are stored in the data set.

� Standard character values can include numbers, but numeric values cannot include
characters.

 164

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which of the following is not created during the co mpilation phase?
a. the data set descriptor
b. the first observation
c. the program data vector
d. the _N_ and _ERROR_ automatic variables

2. During the compilation phase, SAS scans each statem ent in the DATA step,
looking for syntax errors. Which of the following i s not considered a syntax
error?

a. incorrect values and formats
b. invalid options or variable names
c. missing or invalid punctuation
d. missing or misspelled keywords

3. Unless otherwise directed, the DATA step executes
a. once for each compilation phase.
b. once for each DATA step statement.
c. once for each record in the input file.
d. once for each variable in the input file.

4. At the beginning of the execution phase, the value of _N_ is 1, the value of
ERROR is 0, and the values of the remaining variables are set to

a. 0
b. 1
c. undefined
d. missing

5. Suppose you run a program that causes three DATA st ep errors. What is the
value of the automatic variable _ERROR_ when the observation that contains the
third error is processed?

a. 0
b. 1
c. 2
d. 3

6. Which of the following actions occurs at the end of the DATA step?
a. The automatic variables _N_ and _ERROR_ are incr emented by one.
b. The DATA step stops execution.
c. The descriptor portion of the data set is writte n.
d. The values of variables created in programming s tatements are re-set to

missing in the program data vector.

7. Look carefully at the DATA step shown below. Based on the INPUT statement,
in what order will the variables be stored in the n ew data set?

data perm.update;

 infile invent;

 input IDnum $ 15-19 Item $ 1-13 Instock 21-22

 BackOrd 24-25;

 165

 Total=instock+backord;

run;
a. IDnum Item InStock BackOrd Total
b. Item IDnum InStock BackOrd Total
c. Total IDnum Item InStock BackOrd
d. Total Item IDnum InStock BackOrd

8. If SAS cannot interpret syntax errors, then
a. data set variables will contain missing values.
b. the DATA step does not compile.
c. the DATA step still compiles, but it does not ex ecute.
d. the DATA step still compiles and executes.

9. What is wrong with this program?

data perm.update;

 infile invent

 input Item $ 1-13 IDnum $ 15-19 Instock 21-22

 BackOrd 24-25;

 total=instock+backord;

run;
a. missing semicolon on second line
b. missing semicolon on third line
c. incorrect order of variables
d. incorrect variable type

10. Look carefully at this section of a SAS session log . Based on the note, what was
the most likely problem with the DATA step?

NOTE: Invalid data for IDnum in line 7 15-19.

RULE: ----+----1----+----2----+----3----+----4

7 Bird Feeder LG088 3 20

Item=Bird Feeder IDnum=. InStock=3 BackOrd=20

Total=23 _ERROR_=1 _N_=1

a. A keyword was misspelled in the DATA step.
b. A semicolon was missing from the INFILE statemen t.
c. A variable was misspelled in the INPUT statement .
d. A dollar sign was missing in the INPUT statement .

Answers

1. Correct answer: b

At the beginning of the compilation phase, the program data vector is created. The program
data vector includes the two automatic variables _N_ and _ERROR_. The descriptor portion of
the new SAS data set is created at the end of the compilation phase. The descriptor portion
includes the name of the data set, the number of observations and variables, and the names

 166

and attributes of the variables. Observations are not written until the execution phase.

2. Correct answer: a

Syntax checking can detect many common errors, but it cannot verify the values of variables
or the correctness of formats.

3. Correct answer: c

The DATA step executes once for each record in the input file, unless otherwise directed.

4. Correct answer: d

The remaining variables are initialized to missing. Missing numeric values are represented by
periods, and missing character values are represented by blanks.

5. Correct answer: b

The default value of _ERROR_ is 0, which means there is no error. When an error occurs,
whether it is one error or multiple errors, the value is set to 1.

6. Correct answer: d

By default, at the end of the DATA step, the values in the program data vector are written to
the data set as an observation, the value of the automatic variable _N_ is incremented by
one, control returns to the top of the DATA step, and the values of variables created in
programming statements are set to missing. The automatic variable _ERROR_ retains its
value.

7. Correct answer: a

The order in which variables are defined in the DATA step determines the order in which the
variables are stored in the data set.

8. Correct answer: c

When SAS can't interpret syntax errors, the DATA step compiles, but it does not execute.

9. Correct answer: a

A semicolon is missing from the second line. It will cause an error because the INPUT
statement will be interpreted as invalid INFILE statement options.

10. Correct answer: d

The third line of the log displays the values for IDnum, which are clearly character values.
The fourth line displays the values in the program data vector and shows that the values for
IDnum are missing, even though the other values are correctly assigned. Thus, it appears
that numeric values were expected for IDnum. A dollar sign, to indicate character values,
must be missing from the INPUT statement.

 167

Chapter 7: Creating and Applying User-Defined

Overview

Introduction

In Chapter 4, Creating List Reports , you learned to associate formats with variables either
temporarily or permanently.

But sometimes you might want to create custom formats for displaying variable values. For
example, you can format a product number so that it is displayed as descriptive text, as shown
below.

Using the FORMAT procedure, you can define your own formats for variables. You can store your
formats temporarily or permanently, and you can display a list of all your formats and descriptions
of their values.

Objectives

In this chapter, you learn to
� create your own formats for displaying variable values
� permanently store the formats that you create
� associate your formats with variables.

Introduction to PROC FORMAT

Sometimes variable values are stored according to a code. For example, when the PRINT
procedure displays the data set Perm.Empinfo , notice that the values for JobTitle are coded,
and they are not easily interpreted.

Obs FirstName LastName JobTitle Salary

1 Donny Evans 112 29996.63

2 Lisa Helms 105 18567.23

3 John Higgins 111 25309.00

4 Amy Larson 113 32696.78

5 Mary Moore 112 28945.89

6 Jason Powell 103 35099.50

7 Judy Riley 111 25309.00

8 Neal Ryan 112 28180.00

 168

You can display more descriptive values for these variables. Here is how a report that contains
formatted values for the variable JobTitle might look. The predefined SAS formats cannot help
here.

Obs FirstName LastName JobTitle Salary

1 Donny Evans technical writer 29996.63

2 Lisa Helms text processor 18567.23

3 John Higgins assoc. technical
writer

25309.00

4 Amy Larson senior technical writer 32696.78

5 Mary Moore technical writer 28945.89

6 Jason Powell manager 35099.50

7 Judy Riley assoc. technical
writer

25309.00

8 Neal Ryan technical writer 28180.00

However, you can use the FORMAT procedure to define your own formats for displaying values
of variables.

Invoking PROC FORMAT

To begin a PROC FORMAT step, you use a PROC FORMAT statement.

General form, PROC FORMAT statement:

PROC FORMAT <options>;

where options includes
� LIBRARY= libref specifies the libref for a SAS data library that contains a permanent

catalog in which user-defined formats are stored
� FMTLIB prints the contents of a format catalog.

Any time you use PROC FORMAT to create a format, the format is stored in a format catalog. If
the SAS data library does not already contain a format catalog, SAS automatically creates one. If
you do not specify the LIBRARY= option, then the formats are stored in a default format catalog
named Work.Formats .

As the libref Work implies, any format that is stored in Work.Formats is a temporary format that
exists only for the current SAS session. At the end of the current session, the catalog is erased.

Permanently Storing Your Formats

You can store your formats in a permanent format catalog named Formats when you specify
the LIBRARY= option in the PROC FORMAT statement.

PROC FORMAT LIBRARY=libref;

 169

But first, you need a LIBNAME statement that associates the libref with the permanent SAS data
library in which the format catalog is to be stored. It is recommended, but not required, that you
use the word Library as the libref when creating your own permanent formats.

libname library 'c:\sas\formats\lib';

libname library 'c:\data\setup\library';

libname library 'c:\sales\ancillary\libset';

When you associate a permanent format with a variable in a subsequent DATA or PROC step,
you use the Library libref to reference the location of the format catalog.

We'll discuss the use of permanent user-defined formats later, after you learn how to create them.

Now, any format that you create in this PROC FORMAT step is stored in a permanent format
catalog called Library.Formats .

libname library 'c:\sas\formats\lib';

proc format library=library;

 ... ;

run;

In the program above, the catalog Library.Formats is located in the SAS data library
C:\Sas\Formats\Lib , which is referenced by the libref Library .

You can use LIB= as an abbreviation for the LIBRARY= option.

proc format lib =library;

You can specify a catalog name in the LIBRARY= option, and you can store formats in any
catalog. The catalog name must conform to SAS naming conventions.

proc format lib=library.catalog;

Now that you know how to store your own formats, let's learn how to create them.

Defining a Unique Format

You can use the VALUE statement to define a format for displaying one or more values.

General form, VALUE statement:

VALUE format-name
range1='label1'
range2='label2'
... ;

where
� format-name names the format that you are creating. The format name

o must begin with a dollar sign ($) if the format applies to character data
o cannot be longer than eight characters
o cannot be the name of an existing SAS format
o cannot end with a number
o does not end in a period when specified in a VALUE statement.

� range specifies one or more variable values and a character string or an existing format
� label is a text string enclosed in quotation marks.

 170

Notice that the statement begins with the keyword VALUE and ends with a semicolon after all the
labels have been defined. The following VALUE statement creates the JOBFMT format to specify
descriptive labels that will later be assigned to the variable JobTitle :

proc format lib=library;

 value jobfmt

 103='manager'

 105='text processor'

 111='assoc. technical writer'

 112='technical writer'

 113='senior technical writer';

run;

The VALUE range specifies
� a single value , such as 24 or 'S'
� a range of numeric values, such as 0–1500
� a range of character values enclosed in quotation marks, such as 'A'–'M'.
� a list of unique values separated by commas, such as 90,180,270 or 'B','D','F'. These

values can be character values or numeric values, but not a combination of character and
numeric values (because formats themselves are either character or numeric).

When the specified values are character values , they must be enclosed in quotation marks and
must match the case of the variable's values. The format's name must also start with a dollar sign
($). For example, the VALUE statement below defines the $GRADE format, which displays the
character values as text labels.

proc format lib=library;

 value $grade

 'A'='Good'

 'B'-'D'='Fair'

 'F'='Poor'

 'I','U'='See Instructor';

run;

When the specified values are numeric values , they are not enclosed in quotation marks, and
the format's name should not begin with a dollar sign ($). The VALUE statement that defines the
format JOBFMT assigns labels to numeric values.

proc format lib=library;

 value jobfmt

 103='manager'

 105='text processor'

 111='assoc. technical writer'

 112='technical writer'

 113='senior technical writer';

run;

 171

Specifying Value Ranges

You can specify a non-inclusive range of numeric values by using the "less than" symbol (<) to
avoid any overlapping. In this example, the range of values from 0 to less than 13 is labeled as
child . The next range begins at 13, so the label teenager would be assigned to the values 13 to
19.

proc format lib=library;

 value agefmt

 0-<13='child'

 13-<20='teenager'

 20-<65='adult'

 65-100='senior citizen';

run;

You can also use the keywords LOW and HIGH to specify the lower and upper limits of a
variable's value range. The keyword LOW does not include missing numeric values. The keyword
OTHER can be used to label missing values as well as any values that are not specifically
addressed in a range.

proc format lib=library;

 value agefmt

 low -<13='child'

 13-<20='teenager'

 20-<65='adult'

 65- high ='senior citizen'

 other ='unknown';

run;

Note If applied to a character format, the keyword LOW includes missing character

values.

When specifying a label for displaying each range, remember to
� enclose the label in quotation marks
� limit the label to 256 characters
� use double quotation marks if you want an apostrophe to appear in the label, as in this

example:

 000="employee's jobtitle unknown";

Defining Multiple Formats

To define several formats, you can use multiple VALUE statements in a single PROC FORMAT
step. In this example, each VALUE statement defines a different format.

proc format lib=library;

 value jobfmt

 103='manager'

 105='text processor'

 111='assoc. technical writer'

 112='technical writer'

 172

 113='senior technical writer';

 value $respnse

 'Y'='Yes'

 'N'='No'

 'U'='Undecided'

 'NOP'='No opinion';

run;

The SAS log prints notes informing you that the formats have been created.
SAS Log (Partial Listing)

01 proc format lib=library;

02 value jobfmt

03 103='manager'

04 105='text processor'

05 111='assoc. technical writer'

06 112='technical writer'

07 113='senior technical writer';

 NOTE: Format JOBFMT has been written to LIBRARY .FORMATS.

Because you have defined the JOBFMT format for displaying the values of JobTitle , the format
can be used with PROC PRINT for more legible output.

(Without Format)

FirstName LastName JobTitle Salary

Donny Evans 112 29996.63

Lisa Helms 105 18567.23

John Higgins 111 25309.00

Amy Larson 113 32696.78

Mary Moore 112 28945.89

Jason Powell 103 35099.50

(With Format)

FirstName LastName JobTitle Salary

Donny Evans technical writer 29996.63

Lisa Helms text processor 18567.23

John Higgins assoc. technical
writer

25309.00

Amy Larson senior technical writer 32696.78

Mary Moore technical writer 28945.89

 173

(With Format)

FirstName LastName JobTitle Salary

Jason Powell manager 35099.50

The next section shows how to apply your formats to variables.

Associating User-Defined Formats with Variables

Referencing Your Formats

Remember that permanent, user-defined formats are stored in a format catalog. For example, the
program below stores the format JOBFMT in a catalog named Library.Formats , which is located
in the directory C:\Sas\Formats\Lib in the Windows environment.

libname library 'c:\sas\formats\lib';

proc format lib=library;

 value jobfmt

 103='manager'

 105='text processor'

 111='assoc. technical writer'

 112='technical writer'

 113='senior technical writer';

run;

To use the JOBFMT format in a subsequent SAS session, you must assign the libref Library
again.

 libname library 'c:\sas\formats\lib';

 data ... ;

SAS searches for the format JOBFMT in two libraries, in this order:
� the temporary library referenced by the libref Work
� a permanent library referenced by the libref Library .

SAS uses the first instance of a specified format that it finds.

Info You can delete formats by using PROC CATALOG or the SAS Explorer window.

Assigning Your Formats to Variables

Just as with SAS formats, you associate a user-defined format with a variable in a FORMAT
statement .

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

 @19 Salary comma9.;

 format salary comma9.2 jobtitle jobfmt.;

 174

run;

Note Don't worry about @ pointer controls in programs in this chapter (as in

@9FirstName), because they don't affect the behavior of formats. To learn
more about using @ pointer controls in SAS programs, see Chapter 17,
Reading Raw Data in Fixed Fields .

Remember, you can place the FORMAT statement in either a DATA step or a PROC step. By
placing the FORMAT statement in a DATA step, you can permanently associate a format with a
variable. Note that you do not have to specify a width value when using a user-defined format.

When you submit the PRINT procedure, the output for Perm.Empinfo now shows commas in the
values for Salary , and it shows descriptive labels in place of the values for JobTitle .

proc print data=perm.empinfo;

run;

Obs FirstName LastName JobTitle Salary

1 Donny Evans technical writer 29,996.63

2 Lisa Helms text processor 18,567.23

3 John Higgins assoc. technical
writer

25,309.00

4 Amy Larson senior technical writer 32,696.78

5 Mary Moore technical writer 28,945.89

6 Jason Powell manager 35,099.50

7 Judy Riley assoc. technical
writer

25,309.00

8 Neal Ryan technical writer 28,180.00

When associating a format with a variable, remember to
� use the same format name in the FORMAT statement that you specified in the VALUE

statement
� place a period at the end of the format name when it is used in the FORMAT statement.

� libname library 'c:\sas\formats\lib';

� proc format lib=library;

� value jobfmt

� 103='manager'

� 105='text processor'

� 111='assoc. technical writer'

� 112='technical writer'

� 113='senior technical writer';

� run;

� libname perm 'c:\data\perm';

� filename empdata 'c:\data\temp\newhires.txt';

� data perm.empinfo;

� infile empdata;

 175

� input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

� @19 Salary comma9.;

� format salary comma9.2 jobtitle jobfmt.;

run;

Notice that a period is not required at the end of the SAS format COMMA9.2 in the FORMAT
statement. The period in this format occurs between the width specification and the decimal place
specification. All formats contain periods, but only user-defined formats invariably require periods
at the end of the name.

If you do not format all of a variable's values, then those values that are not listed in the VALUE
statement are printed as they appear in the SAS data set, as shown in the following example:

proc format lib=library;

 value jobfmt

 103='manager'

 105='text processor';

 112='technical writer';

run;

proc print data=perm.empinfo;

run;

Obs FirstName LastName JobTitle Salary

1 Donny Evans 112 29996.63

2 Lisa Helms text processor 18567.23

3 John Higgins 111 25309.00

4 Amy Larson 113 32696.78

5 Mary Moore 112 28945.89

6 Jason Powell manager 35099.50

7 Judy Riley 111 25309.00

8 Neal Ryan technical writer 28180.00

Displaying a List of Your Formats

When you build a large catalog of permanent formats, it can be easy to forget the exact spelling
of a specific format name or its range of values. Adding the keyword FMTLIB to the PROC
FORMAT statement displays a list of all the formats in your catalog, along with descriptions of
their values.

libname library 'c:\sas\formats\lib';

proc format library=library fmtlib;

run;

When you submit this PROC step, a description of each format in your permanent catalog is
displayed as output.

 176

SAS Output

Format Name: JobFmt Length: 23 Number of Values: 5
Min Length: 1 Max Length: 40 Default Length: 23 Fuz z: Std

START END LABEL (VER. 9.00 29AUG2002:11:13:14)

103 103 manager

105 105 text processor

111 111 assoc. technical writer

112 112 technical writer

113 113 senior technical writer

In addition to the name, range, and label, the format description includes the
� length of the longest label
� number of values defined by this format
� version of SAS that this format is compatible with
� date and time of creation.

Summary

Text Summary

Invoking PROC FORMAT

The FORMAT procedure enables you to substitute descriptive text values for the values of
variables. The LIBRARY= option stores the new formats in a specified format catalog. Otherwise,
they are stored in a default catalog named Work.Formats . The keyword FMTLIB displays the
formats and values that are currently stored in the catalog. The VALUE statement defines a new
format for the values of a variable.

Defining a Unique Format

Formats can be specified for a single value, a range of numeric values, or a list of unique values.
Unique values must be separated by commas. When character values are specified, the values
must be enclosed in quotation marks, and the format name must begin with a dollar sign ($). You
can specify non-inclusive numeric ranges by using the "less than" sign (<). The keywords HIGH,
LOW, and OTHER can be used to label values that are not specifically addressed in a range.

Associating User-Defined Formats with Variables

To access the permanent, user-defined formats in a format catalog , you'll need to use a
LIBNAME statement to reference the catalog library. To associate user-defined formats with
variables in the FORMAT statement, use the same format names in both the FORMAT and
VALUE statements, but place a period at the end of the format name when it is used in the
FORMAT statement.

Points to Remember
� Formats—even permanently associated ones—do not affect the values of variables in a

SAS data set. Only the appearance of the values is changed.

 177

� A user-defined format name must begin with a dollar sign ($) when it is assigned to
character variables. A user-defined format name cannot end with a number.

� Use two double quotation marks when you want an apostrophe to appear in a label.
� Place a period at the end of the format name when you use the format name in the

FORMAT statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. If you don't specify the LIBRARY= option, your form ats are stored in
Work.Formats, and they exist

1. only for the current procedure.
2. only for the current DATA step.
3. only for the current SAS session.
4. permanently.

2. Which of the following statements will store your f ormats in a permanent
catalog?

1. libname library 'c:\sas\formats\lib';proc form at lib=library ...;
2. libname library 'c:\sas\formats\lib';format li b=library ...;
3. library='c:\sas\formats\lib';proc format libra ry ...;
4. library='c:\sas\formats\lib';proc library ...;

3. When creating a format with the VALUE statement, th e new format's name
� cannot end with a number
� cannot end with a period
� cannot be the name of a SAS format, and

1. cannot be the name of a data set variable.
2. must be at least two characters long.
3. must be at least eight characters long.
4. must begin with a dollar sign ($) if used with a character variable.

4. Which of the following FORMAT procedures is written correctly?
1. proc format lib=library value colorfmt; 1='Red ' 2='Green' 3='Blue' run;
2. proc format lib=library; value colorfmt 1='Red ' 2='Green' 3='Blue'; run;
3. proc format lib=library; value colorfmt; 1='Re d' 2='Green' 3='Blue' run;
4. proc format lib=library; value colorfmt 1='Red '; 2='Green'; 3='Blue'; run;

5. Which of these is false? Ranges in the VALUE statem ent can specify
1. a single value, such as 24 or ' S'.
2. a range of numeric values, such as 0–1500.
3. a range of character values, such as ' A '–'M'.
4. a list of numeric and character values separated by commas, such as

90,'B ',180,'D',270.

6. How many characters can be used in a label?
1. 40
2. 96
3. 200
4. 256

7. Which keyword can be used to label missing values a s well as any values that
are not specified in a range?

 178

1. LOW
2. MISS
3. MISSING
4. OTHER

8. You can place the FORMAT statement in either a DATA step or a PROC step.
What happens when you place the FORMAT statement in a DATA step?

1. You temporarily associate the formats with varia bles.
2. You permanently associate the formats with varia bles.
3. You replace the original data with the format la bels.
4. You make the formats available to other data set s.

9. The format JOBFMT was created in a FORMAT procedure . Which FORMAT
statement will apply it to the variable JobTitle in the program output?

1. format jobtitle jobfmt;
2. format jobtitle jobfmt.;
3. format jobtitle=jobfmt;
4. format jobtitle='jobfmt';

10. Which keyword, when added to the PROC FORMAT statem ent, will display all
the formats in your catalog?

1. CATALOG
2. LISTFMT
3. FMTCAT
4. FMTLIB

Answers

1. Correct answer: c

If you do not specify the LIBRARY= option, formats are stored in a default format catalog
named Work.Formats . As the libref Work implies, any format that is stored in
Work.Formats is a temporary format that exists only for the current SAS session.

2. Correct answer: a

To store formats in a permanent catalog, you first write a LIBNAME statement to associate
the libref with the SAS data library in which the catalog will be stored. Then add the LIB= (or
LIBRARY=) option to the PROC FORMAT statement, specifying the name of the catalog.

3. Correct answer: d

The name of a format that is created with a VALUE statement must begin with a dollar sign
($) if it applies to a character variable.

4. Correct answer: b

A semicolon is needed after the PROC FORMAT statement. The VALUE statement begins
with the keyword VALUE and ends with a semicolon after all the labels have been defined.

5. Correct answer: d

You can list values separated by commas, but the list must contain either all numeric values
or all character values. Data set variables are either numeric or character.

 179

6. Correct answer: d

When specifying a label, enclose it in quotation marks and limit the label to 256 characters.

7. Correct answer: d

MISS and MISSING are invalid keywords, and LOW does not include missing values. The
keyword OTHER can be used in the VALUE statement to label missing values as well as any
values that are not specifically included in a range.

8. Correct answer: b

By placing the FORMAT statement in a DATA step, you permanently associate the defined
formats with variables.

9. Correct answer: b

To associate a user-defined format with a variable, place a period at the end of the format
name when it is used in the FORMAT statement.

10. Correct answer: d

Adding the keyword FMTLIB to the PROC FORMAT statement displays a list of all the
formats in your catalog, along with descriptions of their values.

 180

Chapter 8: Creating Enhanced List and Summary
Reports

Overview

Introduction

List and summary reports are often created from SAS data. To produce a variety of reports using
a single report-writing tool, you can use PROC REPORT. In addition to creating list reports,
PROC REPORT enables you to
� create custom reports
� request separate subtotals and grand totals
� calculate columns
� create and store report definitions.

You can use PROC REPORT in three ways:
� in a windowing mode with a prompting facility that guides you as you build a report
� in a windowing mode without the prompting facility
� in a nonwindowing mode. In this case, you submit a series of statements with the PROC

REPORT statement, just as you do in other SAS procedures.

SAS Enterprise Guide In SAS Enterprise Guide, you work with PROC

REPORT in a nonwindowing mode. You can access
PROC REPORT in a windowing mode through the SAS
programming interface.

This chapter shows you how to use PROC REPORT by submitting SAS statements. Although
PROC REPORT enables you to create highly customized reports, we'll focus on basic statements
and will add a few enhancements. By the end of the chapter, you'll create a list report and a
summary report.

PROC REPORT List Report

Flight
Number

Flight
Origin Flight

Destination

Mail /
Pounds

Freight
/
Pounds

Revenue

821 LGA LON 403 209 $150,634.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

821 LGA LON 391 395 $167,772.00

821 LGA LON 219 368 $183,106.00

821 LGA LON 389 479 $169,576.00

821 LGA LON 448 282 $143,561.00

821 LGA LON 403 209 $170,766.00

821 LGA LON 345 243 $129,560.00

821 LGA LON 248 307 $196,736.00

821 LGA LON 391 395 $125,344.00

 181

PROC REPORT List Report

Flight
Number

Flight
Origin Flight

Destination

Mail /
Pounds

Freight
/
Pounds

Revenue

821 LGA LON 219 368 $166,543.00

821 LGA LON 389 479 $129,745.00

PROC REPORT Summary Report

Flight Number
Flight
Origin

Flight
Destination

Mail /
Pounds

Freight /
Pounds

Total
Revenue

821 LGA LON 4,438 4,284 $2,077,907.00

271 LGA PAR 5,050 4,421 $1,969,201.00

219 LGA LON 2,700 2,513 $1,111,647.00

Objectives

In this chapter, you learn to
� invoke the REPORT procedure and specify a windowing or nonwindowing environment
� select columns for your report
� define the usage for columns
� specify attributes, options, and justification for columns
� specify features of column headings, including split characters, underlining, and blank

lines.

Creating a Default List Report

Let's start by creating a list report. Suppose you want to create a listing of mail, freight, and
passenger revenue for flights between LaGuardia Airport and London or Paris.

As with other SAS procedures, you first reference the library in which your data is stored, and
then you submit a basic PROC REPORT step.

General form, basic PROC REPORT step:

PROC REPORT <DATA=SAS-data-set> <options>;
RUN;

where
� SAS-data-set is the name of the SAS data set that is used for the report
� options includes

SAS Windowing
Environment

� WINDOWS or WD, which invokes the procedure
in a windowing mode. Your report appears in the
REPORT window. This is the default for the SAS
windowing environnment.

� NOWINDOWS or NOWD, which displays a listing
of the report in the OUTPUT window.

Note If you specify HTML output in

your SAS preferences, then
the HTML output appears in

 182

addition to or instead of the
OUTPUT window listing, as
requested. Some PROC
REPORT formatting options
are not applicable to HTML
output.

�

SAS Enterprise Guide � NOWINDOWS or NOWD, which displays a listing of the

report in the results window. This is the default for
Enterprise Guide.

Note Some PROC REPORT formatting

options are not applicable to HTML
output.

�

Example

In this program, PROC REPORT reads the Flights.Europe data set and creates a report in a
nonwindowing mode.

 proc report data=flights.europe nowd;

 run;

This is HTML output from the PROC REPORT step. Notice that by default
� all observations and variables in the data set are printed
� Variables appear in the order in which they occur in the data set.

F
l
i
g
h
t

D
at
e

D
e
p
a
r
t

O
r
i
g

D
e
s
t

M
i
l
e
s

M
a
i
l

F
r
e
i
g
h
t

B
o
ar
d
e
d

Tra
nsf
err
ed

Non
Rev
enu
e

D
ep
la
ne
d

C
a
p
a
ci
ty

Day
Of
Mo
nth

R
e
v
e
n
u
e

8
2
1

04
M
A
R9
9

9
:
3
1

L
G
A

L
O
N

3
4
4
2

4
0
3

2
0
9

16
7

17 7 22
2

25
0

1 15
06
34

2
7
1

04
M
A
R9
9

1
1
:
4
0

L
G
A

P
A
R

3
8
5
6

4
9
2

3
0
8

14
6

8 3 16
3

25
0

1 15
68
04

2
7
1

05
M
A
R9

1
2
:
1

L
G
A

P
A
R

3
8
5
7

3
6
6

4
9
8

17
7

15 5 22
7

25
0

1 19
00
98

 183

F
l
i
g
h
t

D
at
e

D
e
p
a
r
t

O
r
i
g

D
e
s
t

M
i
l
e
s

M
a
i
l

F
r
e
i
g
h
t

B
o
ar
d
e
d

Tra
nsf
err
ed

Non
Rev
enu
e

D
ep
la
ne
d

C
a
p
a
ci
ty

Day
Of
Mo
nth

R
e
v
e
n
u
e

9 9

Selecting Variables

Now let's see how you can choose the data that you want to display.

To select and order the variables that appear in your list report, you can use the COLUMN
statement.

General form, COLUMN statement:

COLUMN variable(s);

where variable(s) is one or more variable names, separated by blanks.

Example

The following COLUMN statement specifies that only the variables Flight , Orig , Dest ,
Mail , Freight , and Revenue be printed, in that order.

proc report data=flights.europe nowd;

 column flight orig dest mail freight revenue;

run;

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

271 LGA PAR 353 205 166470

821 LGA LON 391 395 167772

271 LGA PAR 366 279 163248

821 LGA LON 219 368 183106

271 LGA PAR 357 282 170766

821 LGA LON 389 479 169576

 184

Flight Orig Dest Mail Freight Revenue

271 LGA PAR 415 463 195468

622 LGA FRA 296 414 187636

821 LGA LON 448 282 143561

271 LGA PAR 352 351 123456

219 LGA LON 331 376 189065

387 LGA CPH 395 217 196540

622 LGA FRA 296 232 165456

821 LGA LON 403 209 170766

271 LGA PAR 492 308 125632

219 LGA LON 485 267 197456

387 LGA CPH 393 304 134561

622 LGA FRA 340 311 125436

271 LGA PAR 366 498 128972

219 LGA LON 388 298 162343

821 LGA LON 345 243 129560

219 LGA LON 421 356 134520

387 LGA CPH 546 204 135632

622 LGA FRA 391 423 107865

821 LGA LON 248 307 196736

271 LGA PAR 353 205 153423

219 LGA LON 447 299 106753

387 LGA CPH 415 367 128564

622 LGA FRA 346 . 178543

821 LGA LON 391 395 125344

271 LGA PAR 366 279 133345

219 LGA LON 356 547 122766

387 LGA CPH 363 297 134523

622 LGA FRA 317 421 100987

821 LGA LON 219 368 166543

271 LGA PAR 357 282 126543

219 LGA LON 272 370 198744

387 LGA CPH 336 377 109885

 185

Flight Orig Dest Mail Freight Revenue

622 LGA FRA 272 363 134459

821 LGA LON 389 479 129745

271 LGA PAR 415 463 134976

Selecting Observations

You might also want to select rows for your report based on a condition. To select observations,
you can use the WHERE statement , just as you have learned to do with PROC PRINT.

Example

The following WHERE statement specifies that only observations that have the value LON or
PAR for the variable Dest be printed.

proc report data=flights.europe nowd;

 column flight orig dest mail freight revenue;

 where dest in ('LON','PAR');

run;

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

271 LGA PAR 353 205 166470

821 LGA LON 391 395 167772

271 LGA PAR 366 279 163248

821 LGA LON 219 368 183106

271 LGA PAR 357 282 170766

821 LGA LON 389 479 169576

271 LGA PAR 415 463 195468

821 LGA LON 448 282 143561

271 LGA PAR 352 351 123456

219 LGA LON 331 376 189065

821 LGA LON 403 209 170766

271 LGA PAR 492 308 125632

 186

Flight Orig Dest Mail Freight Revenue

219 LGA LON 485 267 197456

271 LGA PAR 366 498 128972

219 LGA LON 388 298 162343

821 LGA LON 345 243 129560

219 LGA LON 421 356 134520

821 LGA LON 248 307 196736

271 LGA PAR 353 205 153423

219 LGA LON 447 299 106753

821 LGA LON 391 395 125344

271 LGA PAR 366 279 133345

219 LGA LON 356 547 122766

821 LGA LON 219 368 166543

271 LGA PAR 357 282 126543

219 LGA LON 272 370 198744

821 LGA LON 389 479 129745

271 LGA PAR 415 463 134976

Defining Variables

Overview of Defining Variables

In the output that you've seen in this chapter so far, you might have noticed that PROC REPORT
displays
� each data value the way it is stored in the data set
� variable names as column headings in the report
� a default width for the report columns
� left-justified character values
� right-justified numeric values
� observations in the order in which they are stored in the data set.

Partial PROC REPORT Output

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

You can enhance the report by
� defining how each variable is used in the report
� assigning formats to variables
� specifying column headings and widths
� justifying the variable values and column headings within the report columns

 187

� changing the order of the rows in the report.

Using DEFINE Statements

To describe how to use and display variables in your report, you use one or more DEFINE
statements . You can list DEFINE statements in any order, and you can list options (usages,
attributes, and so on) in any order in a DEFINE statement.

General form, simple DEFINE statement:

DEFINE variable / <usage> <attribute(s)> <option(s)>
 <justification> <'column-heading'> ;

where
� variable is the name of the variable that you want to define.
� usage specifies how to use the variable. Valid options are ACROSS, ANALYSIS,

COMPUTED, DISPLAY, GROUP, and ORDER.
� attribute(s) specifies attributes for the variable, including FORMAT=, WIDTH=, and

SPACING=.
� option(s) specifies formatting options, including DESCENDING, NOPRINT, NOZERO,

and PAGE.
� <justification> specifies column justification (CENTER, LEFT, or RIGHT).
� 'column-heading' specifies a label for the column heading.

Example

These DEFINE statements specify attributes, usages, options, justification, and column headings
for the variables Flight and Orig .

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define flight/order descending 'Flight Number'

 center width=6 spacing=5;

 define orig/'Flight Origin' center width=6;

run;

In this chapter, you'll look at each of these ways of defining variables.

Defining Column Attributes

You can easily change the appearance of your PROC REPORT output by specifying attributes for
variables. For example, you can select a format for data values, specify the column width, and
specify the spacing between columns.

To enhance your PROC REPORT output, you'll use the following attributes.

Attribute Action

FORMAT=format Assigns a SAS format or a user-defined format to the item.

 188

Attribute Action

SPACING=horizontal-
positions

Specifies how many blank characters to leave between the
selected column and the column immediately to its left. The
default is 2.

WIDTH=column-width Specifies the width of the column. The default column width
is just large enough to handle the specified format.

Assigning Formats

In previous chapters, you learned that formats determine how data values appear in SAS output.
If you do not specify a format for a variable within the PROC REPORT step, PROC REPORT
uses the format that is stored in the data set. If no format is stored in the data set, PROC
REPORT uses the default format for that variable type.

To assign a format to a specific report column, use the FORMAT= attribute in the DEFINE
statement for that column. You can specify any appropriate SAS format or user-defined format.

Example

The variable Revenue has no format assigned to it in the Flights.Europe data set. So in your
current report, revenue values appear as shown in the example below.

Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

But suppose you want your revenue figures to be formatted with a dollar sign, commas, and two
decimal places, in a total width of 15 positions. To do this, you can assign the DOLLAR15.2
format to Revenue .

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue/format=dollar15.2;

run;

Here is part of the HTML output from the previous program.

Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

 189

Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Notice that the format supplies the dollar sign, comma, decimal point, and decimal places.
However, because the HTML table column conforms to the width of its contents, assigning the
format does not increase the column width beyond the length of the data values.

By contrast, the monospace SAS listing of the report does display the increased column width.
Partial PROC REPORT Output, SAS Listing

Fli Ori Des

ght g t Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Note You can also use FORMAT statements with PROC REPORT. However, the

DEFINE statement enables you to specify more than one column attribute at a
time. Also, you can use the FORMAT= attribute to define report columns (such as
statistics or computed variables) that are not data set variables.

Specifying Column Widths

In the previous example of SAS listing output, you might have noticed that several headings were
wrapped over two lines. (In HTML output, the longest cell value determines the column width, so
wrapping doesn't occur.)

If a variable in the input data set doesn't have a format associated with it, then the default PROC
REPORT column width is
� the variable's length for character variables
� 9 for numeric variables.

The character variables Flight , Orig , and Dest each have a length of 3, and no format is
associated with them. So 3 is their default column width.
Partial PROC REPORT Output, SAS Listing

Fli Ori Des

ght g t Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

 190

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

To specify a width for columns in your report, use the WIDTH= attribute in the DEFINE
statement. You can specify values from 1 to the value of the LINESIZE= system option.

The WIDTH= attribute has no effect on HTML output.

Example

To specify column widths that accommodate the column headings for Flight , Orig , and Dest ,
you can use the following DEFINE statements in your PROC REPORT step:

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight/width=6;

 define orig/width=4;

 define dest/width=4;

run;

Now the headings appear on one line.
Partial PROC REPORT Output, SAS Listing

Flight Orig Dest Mail Freight Rev enue

821 LGA LON 403 209 $150,63 4.00

271 LGA PAR 492 308 $156,80 4.00

271 LGA PAR 366 498 $190,09 8.00

821 LGA LON 345 243 $150,63 4.00

821 LGA LON 248 307 $193,93 0.00

Specifying Column Spacing

Another way to enhance your PROC REPORT output is to specify column spacing , which is the
number of blank characters between the selected column and the column immediately to its left.
The default column spacing is 2. To specify a different column spacing, use the SPACING=
attribute in the DEFINE statement.

The SPACING= attribute has no effect on HTML output.

Example

In the following PROC REPORT output, no spacing has been specified. Orig and Dest have
two blank characters preceding their columns.

 191

Partial PROC REPORT Output, SAS Listing

Flight Orig Dest Mail Freight Rev enue

821 LGA LON 403 209 $150,63 4.00

271 LGA PAR 492 308 $156,80 4.00

271 LGA PAR 366 498 $190,09 8.00

821 LGA LON 345 243 $150,63 4.00

821 LGA LON 248 307 $193,93 0.00

To specify five blank spaces before the column headings for Orig and Dest , you can use
DEFINE statements as shown below in your PROC REPORT step:

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=6;

 define orig / width=4 spacing=5;

 define dest / width=4 spacing=5;

run;

Now the two columns display the extra spacing.
Partial PROC REPORT Output, SAS Listing

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 $ 150,634.00

271 LGA PAR 492 308 $ 156,804.00

271 LGA PAR 366 498 $ 190,098.00

821 LGA LON 345 243 $ 150,634.00

821 LGA LON 248 307 $ 193,930.00

Defining Column Headings

In addition to specifying column widths and spacing, you might want to change column
headings . To define a column heading, enclose the heading text in quotation marks in the
DEFINE statement.

Example

Suppose you want to label Flight as Flight Number , Orig as Flight Origin and Dest as
Flight Destination . Add these column headings to the DEFINE statements, being sure to match
quotation marks. You can also change the WIDTH= specifications to accommodate the new
headings.

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 192

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=13'Flight Number';

 define orig / width=13 spacing=5 'Flight Origin';

 define dest / width=18 spacing=5 'Flight Destination';

run;
Partial PROC REPORT Output, SAS Listing

Flight Number Flight Origin Flight Destin ation

821 LGA LON

271 LGA PAR

271 LGA PAR

821 LGA LON

821 LGA LON

Here is HTML output from the same program.

Partial PROC REPORT Output, HTML

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Now you have the column headings that you want. But the columns are so wide that you might
prefer to split the long column headings across two lines.

Splitting Column Headings across Multiple Lines

To control how words break in column headings, you can use a split character in the column
label. When PROC REPORT encounters the split character in a column heading, it breaks the
heading and continues the heading on the next line. The split character itself does not appear in
the heading.

To use a split character, you can do either of the following:
� Use the default slash (/) as the split character.
� Define a split character by using the SPLIT= option in the PROC REPORT statement.

Example

Suppose you want to break headings so that only one word appears on a line. Using the default
slash as the split character, you can submit this PROC REPORT step. Notice that the column
width has been reduced.

 193

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=6 'Flight/Number';

 define orig / width=6 spacing=5 'Flight/Origin';

 define dest / width=11 spacing=5 'Flight/Destination';

run;

Or you can submit this program, which uses the SPLIT= option and produces exactly the same
output:

proc report data=flights.europe nowd split='*';

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=6 'Flight*Number';

 define orig / width=6 spacing=5 'Flight*Origin';

 define dest / width=11 spacing=5 'Flight*Destination';

run;

Here are both types of output from both programs.

Partial PROC REPORT Output, HTML

Flight Number FlightOrigin Flight
Destination

Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight

Number Origin Destination Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Specifying Column Justification

 194

You might also want to specify justification for columns in your report. Remember that by default
in listing output, PROC REPORT left-justifies character variables and right-justifies numeric
variables. For each variable that you define, you can specify the justification option CENTER,
LEFT, or RIGHT in the DEFINE statement.

Each option justifies both the formatted values of the report item within the column width and the
column headings over the values.

Example

To center headings and values for Flight , Orig , and Dest , you can specify the CENTER
option in your DEFINE statements as shown below:

proc report data=flights.europe nowd;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=6 'Flight/Number' center;

 define orig / width=6 spacing=5 'Flight/Origin' center;

 define dest / width=11 spacing=5 'Flight/Destina tion' center;

run;
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight

Number Origin Destination Mail F reight
Revenue

--- --------------------
-

 821 LGA LON 403 209
$150,634.00

 271 LGA PAR 492 308
$156,804.00

 271 LGA PAR 366 498
$190,098.00

 821 LGA LON 345 243
$150,634.00

 821 LGA LON 248 307
$193,930.00

Enhancing the Heading’s Appearance

To complete the job of enhancing headings in your list report, you can take advantage of two
useful options in the PROC REPORT statement:
� HEADLINE , which underlines all column headings and the spaces between them
� HEADSKIP , which writes a blank line beneath all column headings or after the underline

if the HEADLINE option is used.

These options have no effect on HTML output.

Example

 195

In this PROC REPORT step, the PROC REPORT statement specifies both HEADLINE and
HEADSKIP.

proc report data=flights.europe nowd headline headskip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / width=6 'Flight/Number' center;

 define orig / width=6 spacing=5 'Flight/Origin' center;

 define dest / width=11 spacing=5 'Flight/Destina tion' center;

run;

In the SAS listing output, the column headings are underlined and are followed by a blank line.
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight

Number Origin Destination Mail Freigh t Revenue

--- -----------------

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Defining Variable Usage

So far, you've selected data for your list report and defined column attributes and headings. Next,
let's look at a more complex PROC REPORT feature: usage for variables in your report. You've
seen that you define variable usage in the DEFINE statement. Now you can see how each usage
affects the layout of your report and the values that the report contains.

How PROC REPORT Uses Variables

PROC REPORT uses each variable in one of six ways (DISPLAY, ORDER, GROUP, ACROSS,
ANALYSIS, or COMPUTED). By default, PROC REPORT uses
� character variables as display variables
� numeric variables as analysis variables, which are used to calculate the SUM statistic.

Because you haven't explicitly defined any variable usages, your current list report contains only
display and analysis variables:
� The character variables Flight , Orig , and Dest are display variables. Display

variables don't affect the order of rows in the report. A report that contains one or more
display variables has a detail row for each observation that is read from the data set. Each
detail row contains a value for each display variable.

� The numeric variables Mail , Freight , and Revenue are analysis variables. Analysis
variables are used to calculate a statistic (in this case, the default SUM).

In the illustration below, columns for display variables are shown in white. Columns for analysis
variables are shown in gray.

 196

Illustration of Partial PROC REPORT Output

Using Order Variables

How you use a variable in a report determines, among other things, the order of the rows in your
report.

An order variable orders the detail rows in a report according to their formatted values. For
example, suppose you want to see values in your list report ordered by flight number. To use
Flight as an order variable, you specify the ORDER usage option in the DEFINE statement, as
shown below.

proc report data=flights.europe nowd headline heads kip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenu e;

 define revenue / format=dollar15.2;

 define flight / order 'Flight/Number' width=6 center;

 define orig / width=6 spacing=5 'Flight/Ori gin' center;

 define dest / width=11 spacing=5 'Flight/De stination'

 center;

run;

In the ordered output shown below, notice that PROC REPORT displays only the first occurrence
of each value of an order variable in a set of rows that have the same value for all order variables.

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 331 376 $189,065.00

 LGA LON 485 267 $197,456.00

 LGA LON 388 298 $162,343.00

 LGA LON 421 356 $134,520.00

 LGA LON 447 299 $106,753.00

 LGA LON 356 547 $122,766.00

 LGA LON 272 370 $198,744.00

271 LGA PAR 492 308 $156,804.00

 LGA PAR 366 498 $190,098.00

 LGA PAR 353 205 $166,470.00

 197

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

 LGA PAR 366 279 $163,248.00

 LGA PAR 357 282 $170,766.00

 LGA PAR 415 463 $195,468.00

 LGA PAR 352 351 $123,456.00

 LGA PAR 492 308 $125,632.00

 LGA PAR 366 498 $128,972.00

 LGA PAR 353 205 $153,423.00

 LGA PAR 366 279 $133,345.00

 LGA PAR 357 282 $126,543.00

 LGA PAR 415 463 $134,976.00

821 LGA LON 403 209 $150,634.00

 LGA LON 345 243 $150,634.00

 LGA LON 248 307 $193,930.00

 LGA LON 391 395 $167,772.00

 LGA LON 219 368 $183,106.00

 LGA LON 389 479 $169,576.00

 LGA LON 448 282 $143,561.00

 LGA LON 403 209 $170,766.00

 LGA LON 345 243 $129,560.00

 LGA LON 248 307 $196,736.00

 LGA LON 391 395 $125,344.00

 LGA LON 219 368 $166,543.00

 LGA LON 389 479 $129,745.00

By default, the order is ascending, but you can change it with the DESCENDING option in the
DEFINE statement:

proc report data=flights.europe nowd headline heads kip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenu e;

 define revenue / format=dollar15.2;

 define flight / order descending 'Flight/Number' width=6

 center;

 define orig / width=6 spacing=5 'Flight/Ori gin' center;

 define dest / width=11 spacing=5 'Flight/De stination'

 198

 center;

run;

Using Group Variables

Your list report is complete. But suppose you now want to create a summary report . That is,
rather than a list of the mail, freight, and revenue for each flight, you want the total mail, freight,
and revenue by flight number. Here is the summary report that you want to create.

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 4421 $1,969,201.00

821 LGA LON 4438 4284 $2,077,907.00

To summarize your data using PROC REPORT, you can define one or more group variables. A
group variable groups the detail rows in a report according to their formatted values. If a report
contains one or more group variables, then PROC REPORT consolidates into one row all
observations from the data set that have a unique combination of values for all group variables.

To define a group variable, you specify the GROUP usage option in the DEFINE statement.

Example

If you submit the following PROC REPORT step, with Flight defined as a group variable, you
get the output shown below.

proc report data=flights.europe nowd headline heads kip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenu e;

 define revenue / format=dollar15.2;

 define flight / group 'Flight/Number' width=6 center;

 define orig / width=6 spacing=5 'Flight/Ori gin' center;

 define dest / width=11 spacing=5 'Flight/De stination'

 center;

run;

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 331 376 $189,065.00

 LGA LON 485 267 $197,456.00

 LGA LON 388 298 $162,343.00

 LGA LON 421 356 $134,520.00

 LGA LON 447 299 $106,753.00

 LGA LON 356 547 $122,766.00

 199

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

 LGA LON 272 370 $198,744.00

271 LGA PAR 492 308 $156,804.00

 LGA PAR 366 498 $190,098.00

 LGA PAR 353 205 $166,470.00

 LGA PAR 366 279 $163,248.00

 LGA PAR 357 282 $170,766.00

 LGA PAR 415 463 $195,468.00

 LGA PAR 352 351 $123,456.00

 LGA PAR 492 308 $125,632.00

 LGA PAR 366 498 $128,972.00

 LGA PAR 353 205 $153,423.00

 LGA PAR 366 279 $133,345.00

 LGA PAR 357 282 $126,543.00

 LGA PAR 415 463 $134,976.00

821 LGA LON 403 209 $150,634.00

 LGA LON 345 243 $150,634.00

 LGA LON 248 307 $193,930.00

 LGA LON 391 395 $167,772.00

 LGA LON 219 368 $183,106.00

 LGA LON 389 479 $169,576.00

 LGA LON 448 282 $143,561.00

 LGA LON 403 209 $170,766.00

 LGA LON 345 243 $129,560.00

 LGA LON 248 307 $196,736.00

 LGA LON 391 395 $125,344.00

 LGA LON 219 368 $166,543.00

 LGA LON 389 479 $129,745.00

But this output looks exactly like the list output in which Flight was an order variable. What
happened?

The problem with the preceding output is that your report contains display variables. As character
variables, Orig and Dest are defined as display variables by default.

 200

All of the variables in a summary report must be defined as group , analysis , across , or
computed variables. This is because PROC REPORT must be able to summarize all variables
across an observation in order to collapse observations. If PROC REPORT can't create groups, it
displays group variables as order variables.

Revising the Report

To group data in your report, you need to define the character variables (Flight , Orig , and
Dest) as group variables, as shown below:

roc report data=flights.europe nowd headline headsk ip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenu e;

 define revenue / format=dollar15.2;

 define flight / group 'Flight/Number' width=6 center;

 define orig / group width=6 spacing=5 'Flight/Origin'

 center;

 define dest / group width=11 spacing=5

 'Flight/Destination' center;

run;

Now PROC REPORT can create groups, and your summary report displays the total mail, freight,
and revenue by flight number. Remember that the default statistic for the analysis variables is
SUM.

Flight Number Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 4421 $1,969,201.00

821 LGA LON 4438 4284 $2,077,907.00

The following table compares the effects of using order variables and group variables.

Effect on Report Order Group

Rows are ordered yes yes

Repetitious printing of values is suppressed yes yes

Rows that have the same values are collapsed no yes

Type of report produced list summary

Specifying Statistics

As you saw in the previous example, the default statistic for analysis variables is SUM. However,
you might want to display other statistics in your PROC REPORT output. To associate a statistic
with an analysis variable, specify the statistic as an attribute in the DEFINE statement.

Here's the previous sample output, which displays the default statistic SUM for the three analysis
variables:

 201

Flight
Number

Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 5050 $1,969,201.00

821 LGA LON 4438 4438 $2,077,907.00

By specifying MEAN in the DEFINE statement for Revenue , you can display the average
revenue for each flight number. The optional column heading Average Revenue clarifies that the
MEAN statistic is displayed.

proc report data=flights.europe nowd headline heads kip;

 where dest in ('LON','PAR');

 column flight orig dest mail freight revenu e;

 define revenue / mean format=dollar15.2

 'Average/Revenue';

 define flight / group 'Flight/Number' width =6 center;

 define orig / group width=6 spacing=5 'Flig ht/Origin'

 center;

 define dest / group width=11 spacing=5

 'Flight/Destination' center;

run;

Flight
Number

Flight
Origin

Flight
Destination

Mail Freight Average
Revenue

219 LGA LON 2700 2513 $158,806.71

271 LGA PAR 5050 4421 $151,477.00

821 LGA LON 4438 4284 $159,839.00

You can use the following statistics in PROC REPORT.

Statistic Definition

CSS Corrected sum of squares

USS Uncorrected sum of squares

CV Coefficient of variation

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with nonmissing values

NMISS Number of observations with missing values

RANGE Range

 202

Statistic Definition

STD Standard deviation

STDERR Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

PCTN Percentage of a cell or row frequency to a total frequency

PCTSUM Percentage of a cell or row sum to a total sum

VAR Variance

T Student's t for testing the hypothesis that the population mean is 0

PRT Probability of a greater absolute value of student's t

Using Across Variables

So far, we've looked at display, analysis, order, and group variables. You can also define
variables as across variables, which are functionally similar to group variables. However, PROC
REPORT displays the groups that it creates for an across variable horizontally rather than
vertically.

Let's look at an example of across variables to clarify this usage.

Example

The following program uses group variables to produce the output shown. The table shows
unique combinations of values of the group variables, and sums of each analysis variable for
each combination.

proc report data=flights.europe nowd headline heads kip;

 where dest in ('LON','PAR');

 column flight dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / group 'Flight/Number' width=6 center;

 define dest / group width=11 spacing=5

 'Flight/Destination' center;

run;

Flight Number Flight
Destination

Mail Freight Revenue

219 LON 2700 2513 $1,111,647.00

271 PAR 5050 4421 $1,969,201.00

821 LON 4438 4284 $2,077,907.00

Now let's suppose you change the group variables to across variables, as in this program.

proc report data=flights.europe nowd headline heads kip;

 203

 where dest in ('LON','PAR');

 column flight dest mail freight revenue;

 define revenue / format=dollar15.2;

 define flight / across 'Flight/Number' width=6 center;

 define dest / across width=11 spacing=5

 'Flight/Destination' center;

run;

In this case, for each across variable, the table cells contain a frequency count for each unique
value. For each analysis variable, the table cells represent the sum of all the variable's values.

Flight Number Flight Destination

219 271 821 LON PAR Mail Freight Revenue

7 13 13 20 13 12188 11218 $5,158,755.00

Using Computed Variables

The last type of variable usage is reserved for computed variables, which are numeric or
character variables that you define for the report. They are not in the input data set, and PROC
REPORT doesn't add them to the input data set. You can't change the usage of a computed
variable.

In the nonwindowing environment, you add a computed variable as follows:
1. Include the computed variable in the COLUMN statement.
2. Define the variable's usage as COMPUTED in the DEFINE statement.
3. Compute the value of the variable in a compute block that is associated with the variable.

Warning The position of a computed variable is important. PROC

REPORT assigns values to the columns in a row of a report from left
to right. Consequently, you can't base the calculation of a computed
variable on any variable that appears to its right in the report.

Let's see how you create a new variable for your report.

Example

Suppose you want to determine the number of empty seats for each flight. To do so, you can
compute the variable EmptySeats by subtracting the number of passengers deplaning
(Deplaned) from the plane's total seats (Capacity), assuming that the plane is full.

In the following program, you
� specify EmptySeats in the COLUMN statement to the right of the variables that are

used in its calculation.
� define EmptySeats as a computed variable in a DEFINE statement.
� begin a compute block by specifying EmptySeats in a COMPUTE statement.
� use DATA step statements in the compute block to calculate the values of EmptySeats .

Notice that when you refer to an analysis variable, you use a compound name that
identifies both the original variable and the statistic that PROC REPORT now calculates from
it. The compound name has the form variable-name.statistic.

� close the compute block with an ENDCOMP statement.

� proc report data=flights.europe nowd;

 204

� where dest in ('LON','PAR');

� column flight capacity deplaned emptyseats;

� define flight / width=6;

� define emptyseats/computed 'Empty Seats';

� compute emptyseats;

� emptyseats=capacity.sum-deplaned.sum;

� endcomp;

run;

The program creates the following output.

Flight Capacity Deplaned Empty
Seats

821 250 222 28

271 250 163 87

271 250 227 23

821 250 222 28

821 250 158 92

Summary

Text Summary

Creating a Default List Report

To create a default list report, you submit a basic PROC REPORT step. You can specify options
to invoke the procedure in either a windowing or nonwindowing mode. By default, all observations
and variables in the data set are printed, and variables appear in the order in which they occur in
the data set.

Selecting Variables

To select and order the variables that appear in your list report, you can use the COLUMN
statement .

Selecting Observations

To select rows for your report, you can use the WHERE statement as you do with many other
SAS procedures.

Defining Variables

You can enhance your report by defining how each variable is used in the report. To describe
how to use and display variables in your report, you use one or more DEFINE statements .

 205

Defining Column Attributes

To assign a format to a specific report column, use the FORMAT= attribute in the DEFINE
statement for that column. To specify a width for columns in your report, use the WIDTH=
attribute in the DEFINE statement. To specify a different column spacing, use the SPACING=
attribute in the DEFINE statement. To define a column heading, enclose the heading text in
quotation marks in the DEFINE statement. To control how words break in column headings, you
can use a split character in the column label. For each variable that you define, you can specify
the justification option CENTER, LEFT, or RIGHT in the DEFINE statement.

Enhancing the Heading’s Appearance

To enhance headings in your report, you can use the HEADLINE option , which underlines all
column headings and the spaces between them, and the HEADSKIP option , which writes a
blank line before the data values. These options have no effect on HTML output.

Defining Variable Usage

PROC REPORT uses each variable in one of six ways (DISPLAY, ORDER, GROUP, ACROSS,
ANALYSIS, or COMPUTED). By default, PROC REPORT uses character variables as display
variables, and it uses numeric variables as analysis variables, which are used to calculate the
SUM statistic. You can define usage for variables in the DEFINE statement.

Variable Usage in PROC REPORT

Display variables do not affect the order of rows in the report. A report that contains
one or more display variables has a detail row for each observation
in the data set. Each detail row contains a value for each display
variable. By default, PROC REPORT treats all character variables
as display variables.

Ordervariables order the detail rows in a report according to their formatted values.

Groupvariables order the detail rows in a report according to their formatted values.
If a report contains one or more group variables, PROC REPORT
tries to consolidate into one row all observations from the data set
that have a unique combination of values for all group variables.

Across are functionally similar to group variables; however, PROC REPORT
displays

variables the groups that it creates for an across variable horizontally rather
than vertically.

Analysis are used to calculate a statistic. By default, PROC REPORT uses
numeric

variables variables as analysis variables, which are used to calculate the SUM
statistic.

Computed variables are variables that you define for the report. They are not in the data
set. You cannot change the usage of a computed variable.
Computed variables can be either numeric or character variables.

 206

Specifying Statistics

To associate a statistic with an analysis variable, specify the statistic as an attribute in the
DEFINE statement.

Points to Remember
� You can use PROC REPORT in either a windowing or nonwindowing mode.
� You can use FORMAT statements with PROC REPORT, but the DEFINE statement

enables you to specify more than one column attribute at a time.
� For HTML output, the FORMAT= option cannot increase cell width beyond the width of

cell values. The WIDTH= and SPACING= attributes, along with the HEADSKIP and
HEADLINE options, have no effect on HTML output.

� You can use the default slash as the split character, or you can specify a split character
using the SPLIT= option in the PROC REPORT statement.

� By default, PROC REPORT uses character variables as display variables and numeric
variables as analysis variables, which are used to calculate the SUM statistic.

� All of the variables in a summary report must be defined as group, analysis, across, or
computed variables. If PROC REPORT can't create groups, it displays group variables as
order variables.

� You can't change the usage of a computed variable.
� The position of a computed variable is important. You can't base the calculation of a

computed variable on any variable that appears to its right in the report.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. If Style has four unique values and you submit the followin g program, which
output do you get? (Assume that all the other varia bles are numeric.)

proc report data=sasuser.houses nowd;

 column style sqfeet bedrooms price;

 define style / group;

run;
a.

Style SqFeet Bedrooms Price

CONDO 6755 11 $397,250

RANCH 5005 9 $274,300

SPLIT 4110 8 $233,950

TWOSTORY 5835 12 $335,300
b.

Style SqFeet Bedrooms Price

CONDO 1400 2 $80,050
 1390 3 $79,350
 2105 4 $127,150

 207

 1860 2 $110,700

RANCH 1250 2 $64,000
 1500 3 $86,650
 1535 3 $89,100
 720 1 $34,550

SPLIT 1190 1 $65,850
 1615 4 $94,450
 1305 3 $73,650

TWOSTORY 1810 4 $107,250
 1040 2 $55,850
 1240 2 $69,250
 1745 4 $102,950

c.

Style SqFeet Bedrooms Price

15 21705 40 $1,240,800
d.

Style SqFeet Bedrooms Price

RANCH 1250 2 $64,000

SPLIT 1190 1 $65,850

CONDO 1400 2 $80,050

TWOSTORY 1810 4 $107,250

RANCH 1500 3 $86,650

SPLIT 1615 4 $94,450

SPLIT 1305 3 $73,650

CONDO 1390 3 $79,350

TWOSTORY 1040 2 $55,850

CONDO 2105 4 $127,150

RANCH 1535 3 $89,100

TWOSTORY 1240 2 $69,250

RANCH 720 1 $34,550

TWOSTORY 1745 4 $102,950

CONDO 1860 2 $110,700
e.

 208

2. When you define an order variable,
a. the detail rows are ordered according to their f ormatted values.
b. you can't create summary reports.
c. PROC REPORT displays only the first occurrence o f each order variable

value in a set of rows that have the same value for all order variables.
d. all of the above

3. Which attributes or options are reflected in this P ROC REPORT output?

style SqFeet Price

 RANCH 720 $34,550

TWOSTORY 1040 $55,850

 SPLIT 1190 $65,850

TWOSTORY 1240 $69,250

 RANCH 1250 $64,000

 SPLIT 1305 $73,650

 CONDO 1390 $79,350

 CONDO 1400 $80,050

 RANCH 1500 $86,650

 RANCH 1535 $89,100

 SPLIT 1615 $94,450

TWOSTORY 1745 $102,950

TWOSTORY 1810 $107,250

 CONDO 1860 $110,700

 CONDO 2105 $127,150
a. SKIPLINE and FORMAT=
b. CENTER, HEADLINE, HEADSKIP, and either WIDTH=, S PACING=, or

FORMAT=
c. SPACING= only
d. CENTER, FORMAT=, and HEADLINE

4. To create a summary report that shows the average n umber of bedrooms and
the maximum number of baths for each style of house , which DEFINE
statements do you use in your PROC REPORT step?

a. define style / center 'Style of/House';

b. define bedrooms / mean 'Average/Bedrooms';

c. define baths / max 'Maximum/Baths';

d. define style / group;

e. define bedrooms / mean 'Average/Bedrooms';

f. define baths / max 'Maximum/Baths';

g. define style / order;

h. define bedrooms / mean 'Average/Bedrooms';

i. define baths / max 'Maximum/Baths';

 209

j. define style / group;

k. define bedrooms / 'Average/Bedrooms';

l. define baths / 'Maximum/Baths'

5. Which program does not contain an error?

a. proc report data=sasuser.houses nowd;

b. column style bedrooms baths;

c. define style / order;

d. define bedbathratio / computed format=4.2;

e. compute bedbathratio;

f. bedbathratio=baths.sum/bedrooms.sum;

g. endcomp;

h. run;

i. proc report data=sasuser.houses nowd;

j. column style bedrooms baths BedBathRatio;

k. define style / order;

l. define bedbathratio / order format=4.2;

m. compute bedbathratio;

n. bedbathratio=baths.sum/bedrooms.sum;

o. endcomp;

p. run;

q. proc report data=sasuser.houses nowd;

r. column style bedrooms baths BedBathRatio;

s. define style / order;

t. define bedbathratio / computed format=4.2;

u. compute bedbathratio;

v. bedbathratio=baths.sum/bedrooms.sum;

w. endcomp;

x. run;

y. proc report data=sasuser.houses nowd;

z. column style bedrooms baths BedBathRatio;

aa. define style / order;

bb. define bedbathratio / computed format=4.2;

cc. compute bedbathratio;

dd. bedbathratio=baths/bedrooms;

ee. endcomp;

ff. run;

6. What output does this PROC REPORT step produce?

proc report data=sasuser.houses nowd;

 column style sqfeet bedrooms price;

 210

run;
a. a list report ordered by values of the first var iable in the COLUMN

statement
b. a summary report ordered by values of the first variable in the COLUMN

statement
c. a list report that displays a row for each observat ion in the input data set

and which calculates the SUM statistic for numeric variables
d. a list report that calculates the N (frequency) statistic for character

variables

7. Which of the following programs produces this outpu t?

Style

CONDO RANCH SPLIT TWOSTORY Average Price

4 4 3 4 $82,720

a. proc report data=sasuser.houses nowd;

b. column style condo range split

c. twostory price;

d.

e. define price / mean 'Average Price';

f. run;

g. proc report data=sasuser.houses nowd;

h. column style price;

i. define style / group;

j. define price / mean 'Average Price';

k. run;

l. proc report data=sasuser.houses nowd;

m. column style price;

n. define style / across;

o. define price / mean 'Average Price';

p. run;

q. proc report data=sasuser.houses nowd;

r. column style price;

s. define style / across 'CONDO' 'RANCH'

t. 'SPLIT' 'TWOSTORY';

u. define price / mean 'Average Price';

v. run;

8. If you submit this program, where does your PROC RE PORT output appear?

proc report data=sasuser.houses nowd;

 column style sqfeet bedrooms price;

 define style / group;

run;

 211

a. in the PROC REPORT window
b. as HTML and/or SAS listing output
c. both of the above
d. neither of the above

9. How can you create output with headings that break as shown below?

style of Average Maximum

 House Bedrooms Baths

 CONDO 2.75 2.5

 RANCH 2.25 3

 SPLIT 2.666666 3

TWOSTORY 3 3
a. You must specify the SPLIT= option in the PROC R EPORT statement

and use the split character in column headings in D EFINE statements.
b. You must use the default split character in colu mn headings in DEFINE

statements.
c. You must specify either the WIDTH= or the SPACIN G= attribute in

DEFINE statements.
d. These headings split this way by default.

10. Suppose you want to create a report using both char acter and numeric
variables. If you don't use any DEFINE statements i n your PROC REPORT step,

a. your PROC REPORT step will not execute successfu lly.
b. you can produce only list reports.
c. you can order rows by specifying options in the PROC REPORT

statement.
d. you can produce only summary reports.

Answers

1. Correct answer: a

This program creates a summary report, which consolidates into one row all observations
from the data set that have a unique combination of values for the variable Style .

2. Correct answer: d

Order variables do order rows according to the formatted values of the order variable, and
PROC REPORT suppresses repetitious printing of order values. However, you can't use
order variables in a summary report.

3. Correct answer: b

The HEADLINE option underlines the headings, and the HEADSKIP option skips a line
between the headings and the rows in the report. Also, Style is centered, and the column
for Price is wider than the default.

4. Correct answer: b

To create a summary report, you must define a group variable. To produce the statistics that
you want, you must specify the MEAN and MAX statistics for Bedrooms and Baths .

 212

5. Correct answer: c

Program c correctly specifies a computed variable in the COLUMN statement, defines the
variable in a DEFINE statement, and computes values using the form variable-name.statistic
in a compute block.

6. Correct answer: c

By default, PROC REPORT displays character variables as display variables. A report that
contains one or more display variables has a detail row for each observation in the data set.
By default, PROC REPORT displays numeric variables as analysis variables, which are used
to calculate the default statistic SUM.

7. Correct answer: c

In this output, the table cells contain a frequency count for each unique value of an across
variable, Style . You don't have to specify across variable values in your PROC REPORT
step.

8. Correct answer: b

In nonwindowing mode, your PROC REPORT output appears as HTML and/or as SAS listing
output, depending on your option settings.

9. Correct answer: d

By default, columns for character variables are the same as the variable's length, and
columns for numeric variables have a width of 9. So these headings split this way by default.

10. Correct answer: b

Unless you use DEFINE statements to define order variables or group variables, you can't
order rows or produce summary reports. However, DEFINE statements are not required in all
PROC REPORT steps.

 213

Chapter 9: Producing Descriptive Statistics

Overview

Introduction

As you have seen, one of the many features of PROC REPORT is the ability to summarize large
amounts of data by producing descriptive statistics. However, there are SAS procedures that are
designed specifically to produce various types of descriptive statistics and to display them in
meaningful reports. The type of descriptive statistics that you need and the SAS procedure that
you should use depend on whether you need to summarize continuous data values or discrete
data values.

If the data values that you want to describe are continuous numeric values (for example, people's
ages), then you can use the MEANS procedure or the SUMMARY procedure to calculate
statistics such as the mean, sum, minimum, and maximum.

Variable N Mean Std Dev Minimum Maximum

Age 20 47 13 15 63

Height 20 67 4 61 75

Weight 20 175 36 102 240

Pulse 20 75 8 65 100

FastGluc 20 299 126 152 568

PostGluc 20 355 126 206 625

If the data values that you want to describe are discrete (for example, the color of people's eyes),
then you can use the FREQ procedure to show the distribution of these values, such as
percentages and counts.

Eye Color Frequency Percent Cumulative
Frequency

Cumulative
Percent

Brown 92 58.60 92 58.60

Blue 65 41.40 157 100.00

This chapter shows you how to use the MEANS, SUMMARY, and FREQ procedures to describe
your data.

Objectives

In this chapter, you learn to
� determine the n-count, mean, standard deviation, minimum, and maximum of numeric

variables using the MEANS procedure
� control the number of decimal places used in PROC MEANS output
� specify the variables for which to produce statistics
� use the SUMMARY procedure to produce the same results as the MEANS procedure
� describe the difference between the SUMMARY and MEANS procedures
� create one-way frequency tables for categorical data using the FREQ procedure
� create two-way and n-way crossed frequency tables

 214

� Control the layout and complexity of crossed frequency tables.

Computing Statistics for Numeric Variables

Computing Statistics Using PROC MEANS

Descriptive statistics such as the mean, minimum, and maximum can provide useful information
about numeric data. The MEANS procedure provides these and other data summarization tools,
as well as helpful options for controlling your output.

The MEANS procedure can include many statements and options for specifying needed statistics.
For simplicity, let's consider the procedure in its basic form.

General form, basic MEANS procedure:

PROC MEANS <DATA =SAS-data-set>
<statistic-keyword(s)> <option(s)>;
RUN;

where
� SAS-data-set is the name of the data set to be used
� statistic-keyword(s) specifies the statistics to compute
� option(s) controls the content, analysis, and appearance of output.

In its simplest form, PROC MEANS prints the n-count (number of nonmissing values), the mean,
the standard deviation, and the minimum and maximum values of every numeric variable in a
data set.

proc means data=perm.survey;

run;

Variable N Mean Std Dev Minimum Maximum

Item1 4 3.7500000 1.2583057 2.0000000 5.0000000

Item2 4 3.0000000 1.6329932 1.0000000 5.0000000

Item3 4 4.2500000 0.5000000 4.0000000 5.0000000

Item4 4 3.5000000 1.2909944 2.0000000 5.0000000

Item5 4 3.0000000 1.6329932 1.0000000 5.0000000

Item6 4 3.7500000 1.2583057 2.0000000 5.0000000

Item7 4 3.0000000 1.8257419 1.0000000 5.0000000

Item8 4 2.7500000 1.5000000 1.0000000 4.0000000

Item9 4 3.0000000 1.4142136 2.0000000 5.0000000

Item10 4 3.2500000 1.2583057 2.0000000 5.0000000

Item11 4 3.0000000 1.8257419 1.0000000 5.0000000

Item12 4 2.7500000 0.5000000 2.0000000 3.0000000

 215

Variable N Mean Std Dev Minimum Maximum

Item13 4 2.7500000 1.5000000 1.0000000 4.0000000

Item14 4 3.0000000 1.4142136 2.0000000 5.0000000

Item15 4 3.0000000 1.6329932 1.0000000 5.0000000

Item16 4 2.5000000 1.9148542 1.0000000 5.0000000

Item17 4 3.0000000 1.1547005 2.0000000 4.0000000

Item18 4 3.2500000 1.2583057 2.0000000 5.0000000

Specifying Statistics

The default statistics that the MEANS procedure produces (n-count, mean, standard deviation,
minimum, and maximum) are not always the ones that you need. You might prefer to limit output
to the mean of the values. Or you might need to compute a different statistic, such as the median
or range of the values.

To specify statistics, include statistic keywords as options in the PROC MEANS statement. When
you specify a statistic in the PROC MEANS statement, default statistics are not produced. For
example, to see the median and range of Perm.Survey numeric values, add the MEDIAN and
RANGE keywords as options.

proc means data=perm.survey median range;

run;

Variable Median Range

Item1 4.0000000 3.0000000

Item2 3.0000000 4.0000000

Item3 4.0000000 1.0000000

Item4 3.5000000 3.0000000

Item5 3.0000000 4.0000000

Item6 4.0000000 3.0000000

Item7 3.0000000 4.0000000

Item8 3.0000000 3.0000000

Item9 2.5000000 3.0000000

Item10 3.0000000 3.0000000

Item11 3.0000000 4.0000000

Item12 3.0000000 1.0000000

Item13 3.0000000 3.0000000

Item14 2.5000000 3.0000000

Item15 3.0000000 4.0000000

 216

Variable Median Range

Item16 2.0000000 4.0000000

Item17 3.0000000 2.0000000

Item18 3.0000000 3.0000000

The following keywords can be used with PROC MEANS to compute statistics:

Descriptive Statistics

Keyword Description

CLM Two-sided confidence limit for the mean

CSS Corrected sum of squares

CV Coefficient of variation

KURTOSIS / KURT Kurtosis

LCLM One-sided confidence limit below the mean

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with non-missing values

NMISS Number of observations with missing values

RANGE Range

SKEWNESS / SKEW Skewness

STDDEV / STD Standard deviation

STDERR / STDMEAN Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

VAR Variance

Quantile Statistics

Keyword Description

MEDIAN / P50 Median or 50th percentile

P1 1st percentile

P5 5th percentile

P10 10th percentile

Q1 / P25 Lower quartile or 25th percentile

 217

Quantile Statistics

Keyword Description

Q3 / P75 Upper quartile or 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

QRANGE Difference between upper and lower quartiles: Q3-Q1

Hypothesis Testing

Keyword Description

PROBT Probability of a greater absolute value for the t value

T Student's t for testing the hypothesis that the population mean is 0

Limiting Decimal Places

By default, PROC MEANS output uses the BEST. format to display values in the report. As the
following example shows, this can result in unnecessary decimal places, making your output
difficult to read.

proc means data=clinic.diabetes min max;

run;

Variable Minimum Maximum

Age 15.0000000 63.0000000

Height 61.0000000 75.0000000

Weight 102.0000000 240.0000000

Pulse 65.0000000 100.0000000

FastGluc 152.0000000 568.0000000

PostGluc 206.0000000 625.0000000

To limit decimal places, use the MAXDEC= option in the PROC MEANS statement, and set it
equal to the length that you prefer.

General form, PROC MEANS statement with MAXDEC= opt ion:

PROC MEANS <DATA=SAS-data-set>
 <statistic-keyword(s)> MAXDEC=n;

where n specifies the maximum number of decimal places.

proc means data=clinic.diabetes min max maxdec=0;

 run;

 218

Variable Minimum Maximum

Age 15 63

Height 61 75

Weight 102 240

Pulse 65 100

FastGluc 152 568

PostGluc 206 625

Specifying Variables in PROC MEANS

By default, the MEANS procedure generates statistics for every numeric variable in a data set,
although you'll typically want to focus on only a few variables, particularly if the data set is large. It
also makes sense to exclude certain types of variables. The values of employee identification
numbers, for example, are unlikely to yield useful statistics.

To specify the variables that PROC MEANS analyzes, add a VAR statement and list the variable
names.

General form, VAR statement:

VAR variable(s);

where variable(s) lists numeric variables for which to calculate statistics.

proc means data=clinic.diabetes min max maxdec=0;

 var age height weight;

run;

Variable Minimum Maximum

AgeHeight 1561 6375

Weight 102 240

In addition to listing variables separately, you can use a numbered range of variables.

proc means data=perm.survey mean stderr maxdec=2;

 var item1-item5;

run;

Variable Mean Std Error

Item1 3.75 0.63

Item2 3.00 0.82

Item3 4.25 0.25

Item4 3.50 0.65

 219

Variable Mean Std Error

Item5 3.00 0.82

Group Processing Using the CLASS Statement

You will often want statistics for grouped observations, instead of for observations as a whole. For
example, census numbers are more useful when grouped by region than when viewed as a
national total. To produce separate analyses of grouped observations, add a CLASS statement
to the MEANS procedure.

General form, CLASS statement:

CLASS variable(s);

where variable(s) specifies category variables for group processing.

PROC MEANS does not generate statistics for CLASS variables, because their values are used
only to categorize data. CLASS variables can be either character or numeric, but they should
contain a limited number of discrete values that represent meaningful groupings.

The output of the program shown below is categorized by values of the variables Survive and
Sex. The order of the variables in the CLASS statement determines their order in the output
table.

proc means data=clinic.heart maxdec=1;

 var arterial heart cardiac urinary;

 class survive sex;

run;

Survive Sex N
Ob
s

Variable N Mean Std
Dev

Minimum Maximum

DIED 1 4 Arterial

Heat

Cardiac

Urinary

4

4

4

4

92.5

111.0

176.8

98.0

10.5

53.4

75.2

186.1

83.0

54.0

95.0

0.0

103.0

183.0

260.0

377.0

 2 6 Arterial

Heat

Cardiac

Urinary

6

6

6

6

94.2

103.7

318.3

100.3

27.3

16.7

102.6

155.7

72.0

81.0

156.0

0.0

145.0

130.0

424.0

405.0

SURV 1 5 Arterial

Heat

Cardiac

Urinary

5

5

5

5

77.2

109.0

298.0

100.8

12.2

32.0

139.8

60.2

61.0

77.0

66.0

44.0

88.0

149.0

410.0

200.0

 220

Survive Sex N
Ob
s

Variable N Mean Std
Dev

Minimum Maximum

 2 5 Arterial

Heat

Cardiac

Urinary

5

5

5

5

78.8

100.0

330.2

111.2

6.8

13.4

87.0

152.4

72.0

84.0

256.0

12.0

87.0

111.0

471.0

377.0

Group Processing Using the BY Statement

Like the CLASS statement, the BY statement specifies variables to use for categorizing
observations.

General form, BY statement:

BY variable(s);

where variable(s) specifies category variables for group processing.

But BY and CLASS processing differ in two key ways:
1. Unlike CLASS processing, BY processing requires that your data already be sorted or

indexed in the order of the BY variables. Unless data set observations are already
sorted, you will need to run the SORT procedure before using PROC MEANS with any
BY group.

Warning Be careful when sorting data sets to enable group processing. If you

don't specify an output data set by using the OUT= option, then
PROC SORT will overwrite your initial data set with the newly sorted
observations.

2. BY group results have a layout that is different from the layout of CLASS group results.
Note that the BY statement in the program below creates four small tables; a CLASS
statement would produce a single large table.

3. proc sort data=clinic.heart out=work.heartsort;

4. by survive sex;

5. run;

6. proc means data=work.heartsort maxdec=1;

7. var arterial heart cardiac urinary;

8. by survive sex;

run;

Survive=DIED Sex=1

Variable N Mean Std Dev Minimum Maximum

Arterial 4 92.5 10.5 83.0 103.0

Heart 4 111.0 53.4 54.0 183.0

Cardiac 4 176.8 75.2 95.0 260.0

 221

Survive=DIED Sex=1

Variable N Mean Std Dev Minimum Maximum

Urinary 4 98.0 186.1 0.0 377.0

Survive=DIED Sex=2

Variable N Mean Std Dev Minimum Maximum

Arterial 6 94.2 27.3 72.0 145.0

Heart 6 103.7 16.7 81.0 130.0

Cardiac 6 318.3 102.6 156.0 424.0

Urinary 6 100.3 155.7 0.0 405.0

Survive=SURV Sex=1

Variable N Mean Std Dev Minimum Maximum

Arterial 5 77.2 12.2 61.0 88.0

Heart 5 109.0 32.0 77.0 149.0

Cardiac 5 298.0 139.8 66.0 410.0

Urinary 5 100.8 60.2 44.0 200.0

Survive=SURV Sex=2

Variable N Mean Std Dev Minimum Maximum

Arterial 5 78.8 6.8 72.0 87.0

Heart 5 100.0 13.4 84.0 111.0

Cardiac 5 330.2 87.0 256.0 471.0

Urinary 5 111.2 152.4 12.0 377.0

Info Because it doesn't require a sorting step, the CLASS statement is easier to use

than the BY statement. However, BY-group processing can be more efficient
when you are categorizing data that includes many variables.

Creating a Summarized Data Set Using PROC MEANS

You might want to create an output SAS data set that contains only the summarized variable. You
can do this by using the OUTPUT statement in PROC MEANS.

General form, OUTPUT statement:

OUTPUT OUT=SAS-data-set <statistic-keyword=variable-name(s)>;

where
� SAS-data-set specifies the name of the output data set
� statistic-keyword= specifies the summary statistic to be written out
� variable-name(s) specifies the names of the variables that will be created to contain the

values of the summary statistic. These variables correspond to the analysis variables that
are listed in the VAR statement.

 222

When you use the OUTPUT statement without specifying the statistic-keyword= option, the
summary statistics N, MEAN, STD, MIN, and MAX are produced for all of the numeric variables
or for all of the variables that are listed in a VAR statement.

Specifying the statistic-keyword = Option

To specify which statistics to produce in the output data set, you must specify the keyword for the
statistic and then list all of the variables. The variables must be listed in the same order as in the
VAR statement. You can specify more than one statistic in the OUTPUT statement.

The following program creates a typical PROC MEANS report and also creates a summarized
output data set that includes only the MEAN and MIN statistics:

proc means data=clinic.diabetes;

 var age height weight;

 class sex;

 output out=work.sum_gender

 mean=AvgAge AvgHeight AvgWeight

 min=MinAge MinHeight MinWeight;

run;

Se
x

N
O
bs

Variabl
e

N Mean Std Dev Minimum Maximum

F 11 Age 1
1

48.9090909 13.307550
8

16.0000000 63.0000000

 Height 1
1

63.9090909 2.1191765 61.0000000 68.0000000

 Weight 1
1

150.454545
5

18.446482
8

102.000000
0

168.000000
0

M 9 Age 9 44.0000000 12.389511
7

15.0000000 54.0000000

 Height 9 70.6666667 2.6457513 66.0000000 75.0000000

 Weight 9 204.222222
2

30.289345
4

140.000000
0

240.000000
0

To see the contents of the output data set, submit the following PROC PRINT step:

proc print data=work.sum_gender;

 run;

O
b
s

S
e
x

_TY
PE_

_FR
EQ_

Avg
Age

AvgH
eight

AvgW
eight

Min
Age

MinHe
ight

MinW
eight

1 0 20 46.7
000

66.950
0

174.65
0

15 61 102

 223

O
b
s

S
e
x

_TY
PE_

_FR
EQ_

Avg
Age

AvgH
eight

AvgW
eight

Min
Age

MinHe
ight

MinW
eight

2 F 1 11 48.9
091

63.909
1

150.45
5

16 61 102

3 M 1 9 44.0
000

70.666
7

204.22
2

15 66 140

Note You can use the NOPRINT option in the PROC MEANS statement to

prevent the default report from being created. For example, the following
program creates only the output data set:

proc means data=clinic.diabetes noprint;

 var age height weight;

 class sex;

 output out=work.sum_gender

 mean=AvgAge AvgHeight AvgWeight;

 run;

Note In addition to the variables that you specify, the procedure adds the _TYPE_

and _FREQ_ variables to the output data set. When no statistic keywords are
specified, PROC MEANS also adds the variable _STAT_. For more information
about these variables, see the SAS documentation for the MEANS procedure.

Creating a Summarized Data Set Using PROC SUMMARY

You can also create a summarized output data set by using the SUMMARY procedure. When you
use PROC SUMMARY, you use the same code to produce the output data set that you would
use with PROC MEANS.

The difference between the two procedures is that PROC MEANS produces a report by default
(remember that you can use the NOPRINT option to suppress the default report). By contrast, to
produce a report in PROC SUMMARY, you must include a PRINT option in the PROC
SUMMARY statement.

Example

The following example creates an output data set but does not create a report:

proc summary data=clinic.diabetes;

 var age height weight;

 class sex;

 output out=work.sum_gender

 mean=AvgAge AvgHeight AvgWeight;

run;

If you placed a PRINT option in the PROC SUMMARY statement above, this program would
produce the same report as if you replaced the word SUMMARY with MEANS:

proc summary data=clinic.diabetes print;

 var age height weight;

 class sex;

 224

 output out=work.sum_gender

 mean=AvgAge AvgHeight AvgWeight;

run;

Se
x

N
O
bs

Variabl
e

N Mean Std Dev Minimum Maximum

Age 1
1

48.9090909 13.307550
8

16.0000000 63.0000000

Height 1
1

63.9090909 2.1191765 61.0000000 68.0000000

F 11

Weight 1
1

150.454545
5

18.446482
8

102.000000
0

168.000000
0

Age 9 44.0000000 12.389511
7

15.0000000 54.0000000

Height 9 70.6666667 2.6457513 66.0000000 75.0000000

M 9

Weight 9 204.222222
2

30.289345
4

140.000000
0

240.000000
0

Producing Frequency Tables

Producing Frequency Tables Using PROC FREQ

The FREQ procedure is a descriptive procedure as well as a statistical procedure. It produces
oneway and n-way frequency tables, and it concisely describes your data by reporting the
distribution of variable values. You can use the FREQ procedure to create crosstabulation tables
that summarize data for two or more categorical variables by showing the number of observations
for each combination of variable values.

The FREQ procedure can include many statements and options for controlling frequency output.
For simplicity, let's consider the procedure in its basic form.

General form, basic FREQ procedure:

PROC FREQ <DATA=SAS-data-set>;
RUN;

where SAS-data-set is the name of the data set to be used.

By default, PROC FREQ creates a one-way table with the frequency , percent , cumulative
frequency , and cumulative percent of every value of all variables in a data set.

Variable Frequency Percent Cumulative
Frequency

Cumulative
Percent

Value Number of Frequency of Sum of the Cumulative

 225

Variable Frequency Percent Cumulative
Frequency

Cumulative
Percent

observation
s with the
value

the value
divided by
the total
number of
observations

frequency counts of
the value and all
other values listed
above it in the table

frequency of the
value divided by
the total number of
observations

For example, the following FREQ procedure creates a frequency table for each variable in the
data set Parts.Widgets . All the unique values are shown for ItemName , LotSize , and Region .

proc freq data=parts.widgets;

run;

ItemName Frequency Percent Cumulative
Frequency

Cumulative
Percent

Bolt 2930 34.52 2930 34.52

Locknut 3106 36.60 6036 71.12

Washer 2451 28.88 8487 100.00

LotSize Frequency Percent Cumulative
Frequency

Cumulative
Percent

1 4256 50.15 4256 50.15

2 1009 11.89 5265 62.04

3 3222 37.96 8487 100.00

Region Frequency Percent Cumulative
Frequency

Cumulative
Percent

East 2848 33.56 2848 33.56

North 1355 15.97 4203 49.53

South 1706 20.10 5909 69.63

West 2578 30.38 8487 100.00

Specifying Variables in PROC FREQ

By default, the FREQ procedure creates frequency tables for every variable in your data set. But
this isn't always what you want. A variable that has continuous numeric values—such as
DateTime —can result in a lengthy and meaningless table. Likewise, a variable that has a unique
value for each observation—such as FullName —is unsuitable for PROC FREQ processing.
Frequency distributions work best with variables whose values can be described as categorical,
and whose values are best summarized by counts rather than by averages.

To specify the variables to be processed by the FREQ procedure, include a TABLES statement.

General form, TABLES statement:

 226

TABLES variable(s);

where variable(s) lists the variables to include.

Example

The order in which the variables appear in the TABLES statement determines the order in which
they are listed in the PROC FREQ report.

Consider the SAS data set Finance.Loans . The variables Rate and Months are best described
as categorical values, so they are the best choices for frequency tables.

Account Amount Rate Months Payment

101-
1092

$22,000 10.00% 60 $467.43

101-
1731

$114,000 9.50% 360 $958.57

101-
1289

$10,000 10.50% 36 $325.02

101-
3144

$3,500 10.50% 12 $308.52

103-
1135

$8,700 10.50% 24 $403.47

103-
1994

$18,500 10.50% 60 $393.07

103-
2335

$5,000 10.50% 48 $128.02

103-
3864

$87,500 9.50% 360 $735.75

103-
3891

30,000 9.75% 360 $257.75

proc freq data=finance.loans;

 tables rate months;

run;

Rate Frequency Percent Cumulative
Frequency

Cumulative
Percent

9.50% 2 22.22 2 22.22

9.75% 1 11.11 3 33.33

10.00% 2 22.22 5 55.56

10.50% 4 44.44 9 100.00

Months Frequency Percent Cumulative
Frequency

Cumulative
Percent

 227

Rate Frequency Percent Cumulative
Frequency

Cumulative
Percent

12 1 11.11 1 11.11

24 1 11.11 2 22.22

36 1 11.11 3 33.33

48 1 11.11 4 44.44

60 2 22.22 6 66.67

360 3 33.33 9 100.00

In addition to listing variables separately, you can use a numbered range of variables.

proc freq data=perm.survey;

 tables item1-item3;

run;

Item1 Frequency Percent Cumulative
Frequency

Cumulative Percent

2 1 25.00 1 25.00

4 2 50.00 3 75.00

5 1 25.00 4 100.00

Item2 Frequency Percent Cumulative
Frequency

Cumulative Percent

1 1 25.00 1 25.00

3 2 50.00 3 75.00

5 1 25.00 4 100.00

Item3 Frequency Percent Cumulative
Frequency

Cumulative Percent

4 3 75.00 3 75.00

5 1 25.00 4 100.00

Note Adding the NOCUM option to your TABLES statement

suppresses the display of cumulative frequencies and
cumulative percentages in one-way frequency tables and in list
output. The syntax for the NOCUM option is shown below.

TABLES variable(s) / NOCUM;

Creating Two-Way Tables

So far, you have used the FREQ procedure to create one-way frequency tables. The table results
show total frequency counts for the values within the data set. However, it is often helpful to
crosstabulate frequencies with the values of other variables. For example, census data is
typically crosstabulated with a variable that represents geographical regions.

 228

The simplest crosstabulation is a two-way table. To create a two-way table, join two variables
with an asterisk (*) in the TABLES statement of a PROC FREQ step.

General form, TABLES statement for crosstabulation:

TABLES variable-1*variable-2 <* ... variable-n>;

where
� variable-1 specifies table rows
� variable-2 specifies table columns
� variable-n specifies a multi-way table.

When crosstabulations are specified, PROC FREQ produces tables with cells that contain
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

For example, the following program creates the two-way table shown on the following page.

proc format;

 value wtfmt low-139='< 140'

 140-180='140-180'

 181-high='> 180';

 value htfmt low-64='< 5''5"'

 65-70='5''5-10"'

 71-high='> 5''10"';

 run;

 proc freq data=clinic.diabetes;

 tables weight*height;

 format weight wtfmt. height htfmt.;

run;

 229

Note that the first variable, Weight , forms the table rows, and the second variable, Height ,
forms the columns; reversing the order of the variables in the TABLES statement would reverse
their positions in the table. Note also that the statistics are listed in the legend box.

Creating N-Way Tables

For a frequency analysis of more than two variables, use PROC FREQ to create n-way
crosstabulation tables. A series of two-way tables is produced, with a table for each level of the
other variables.

For example, suppose you want to add the variable Sex to your crosstabulation of Weight and
Height in the data set Clinic.Diabetes . Add Sex to the TABLES statement, joined to the other
variables with an asterisk (*).

tables sex* weight*height;

Determining the Table Layout

The order of the variables is important. In n-way tables, the last two variables of the TABLES
statement become the two-way rows and columns. Variables that precede the last two variables
in the TABLES statement stratify the crosstabulation tables.

Notice the structure of the output that is produced by the program shown below. Two
crosstabulation tables, one for each value of Sex, are produced.

proc format;

 value wtfmt low-139='< 140'

 140-180='140-180'

 181-high='> 180';

 value htfmt low-64='< 5''5"'

 65-70='5''5-10"'

 71-high='> 5''10"';

 run;

 proc freq data=clinic.diabetes;

 tables sex*weight*height;

 format weight wtfmt. height htfmt.;

run;

 230

Changing the Table Format

Beginning in SAS 9, adding the CROSSLIST option to your TABLES statement displays
crosstabulation tables in ODS column format. This option creates a table that has a table
definition that you can customize by using the TEMPLATE procedure.

Notice the structure of the output that is produced by the program shown below. proc format;

proc format;

 231

 value wtfmt low-139='< 140'

 140-180='140-180'

 181-high='> 180';

 value htfmt low-64='< 5''5"'

 65-70='5''5-10"'

 71-high='> 5''10"';

 run;

 proc freq data=clinic.diabetes;

 tables sex*weight*height /crosslist;

 format weight wtfmt. height htfmt.;

run;

Table of Weight by Height

Controlling for Sex= F

Weight Height Frequency Percent Row Percent Column Percent

< 140 < 5'5" 2 18.18 100.00 28.57

 5'5-10" 0 0.00 0.00 0.00

 >5'10" 0 0.00 0.00 .

 Total 2 18.18 100.00

140-180 < 5'5" 5 45.45 55.56 71.43

 5'5-10" 4 36.36 44.44 100.00

 >5'10" 0 0.00 0.00 .

 Total 9 81.82 100.00

> 180 < 5'5" 0 0.00 . 0.00

 5'5-10" 0 0.00 . 0.00

 >5'10" 0 0.00 . .

 Total 0 0.00 .

Total < 5'5" 7 63.64 100.00

 5'5-10" 4 36.36 100.00

 >5'10" 0 0.00 .

 Total 11 100.00

Table of Weight by Height

Controlling for Sex=M

Weight Height Frequency Percent Row Percent Column Percent

< 140 < 5'5" 0 0.00 . .

 5'5-10" 0 0.00 . 0.00

 232

Table of Weight by Height

Controlling for Sex= F

Weight Height Frequency Percent Row Percent Column Percent

 >5'10" 0 0.00 . 0.00

 Total 0 0.00 .

140-180 < 5'5" 0 0.00 0.00 .

 5'5-10" 1 11.11 100.00 25.00

 >5'10" 0 0.00 0.00 0.00

 Total 1 11.11 100.00

> 180 < 5'5" 0 0.00 0.00

 5'5-10" 3 3.33 37.50 75.00

 >5'10" 5 55.56 62.50 100.00

 Total 8 88.89 100.00

Total < 5'5" 0 0.00

 5'5-10" 4 44.44 100.00

 >5'10" 5 55.56 100.00

 Total 9 100.00

Creating Tables in List Formats

When three or more variables are specified, the multiple levels of n-way tables can produce
considerable output. Such bulky, often complex crosstabulations are often easier to read as a
continuous list. Although this eliminates row and column frequencies and percents, the results are
compact and clear.

To generate list output for crosstabulations, add a slash (/) and the LIST option to the TABLES
statement in your PROC FREQ step.

TABLES variable-1*variable-2 <* ... variable-n> / LIST;

Example

Adding the LIST option to our Clinic.Diabetes program puts the program’s frequencies in a
simple, short table.

proc format;

 value wtfmt low-139='< 140'

 140-180='140-180'

 181-high='> 180';

 value htfmt low-64='< 5''5"'

 65-70='5''5-10"'

 71-high='> 5''10"';

 233

 run;

 proc freq data=clinic.diabetes;

 tables sex*weight*height / list;

 format weight wtfmt. height htfmt.;

run;

Sex Weight Height Frequency Percent Cumulative
Frequency

Cumulative
Percent

F < 140 < 5'5" 2 10.00 2 10.00

F 140-
180

< 5'5" 5 25.00 7 35.00

F 140-
180

5'5-10" 4 20.00 11 55.00

M 140-
180

5'5-10" 1 5.00 12 60.00

M > 180 5'5-10" 3 15.00 15 75.00

M > 180 > 5'10" 5 25.00 20 100.00

Suppressing Table Information

Another way to control the format of crosstabulation tables is to limit the output of the FREQ
procedure to a few specific statistics . Remember that when crosstabulations are run, PROC
FREQ produces tables with cells that contain
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

You can use options to suppress any of these statistics. To control the depth of crosstabulation
results, add a slash (/) and any combination of the following options to the TABLES statement:
� NOFREQ suppresses cell frequencies.
� NOPERCENT suppresses cell percentages
� NOROW supresses row percentages.
� NOCOL suppresses column percentages.

Example

Suppose you want to use only the percentages of Sex and Weight combinations in the data set
Clinic.Diabetes . To block frequency counts and row and column percentages, add the NOFREQ,
NOROW, and NOCOL options to your program's TABLES statement.

proc format;

 value wtfmt low-139='< 140'

 140-180='140-180'

 181-high='> 180';

run;

proc freq data=clinic.diabetes;

 234

 tables sex*weight / nofreq norow nocol;

 format weight wtfmt.;

run;

Notice that Percent is the only statistic that remains in the table's legend box.

Summary

Text Summary

Purpose of PROC MEANS

The MEANS procedure provides an easy way to compute descriptive statistics. Descriptive
statistics such as the mean, minimum, and maximum provide useful information about numeric
data.

Specifying Statistics

By default, PROC MEANS computes the n-count (the number of nonmissing values), the mean,
the standard deviation, and the minimum and maximum values for variables. To specify statistics,
list their keywords in the PROC MEANS statement.

Descriptive Statistics

Keyword Description

CLM Two-sided confidence limit for the mean

CSS Corrected sum of squares

CV Coefficient of variation

KURTOSIS / KURT Kurtosis

LCLM One-sided confidence limit below the mean

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with nonmissing values

NMISS Number of observations with missing values

RANGE Range

 235

Descriptive Statistics

Keyword Description

SKEWNESS / SKEW Skewness

STDDEV / STD Standard Deviation

STDERR / STDMEAN Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

VAR Variance

Quantile Statistics

Keyword Description

MEDIAN / P50 Median or 50th percentile

P1 1st percentile

P5 5th percentile

P10 10th percentile

Q1 / P25 Lower quartile or 25th percentile

Q3 / P75 Upper quartile or 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

QRANGE Difference between upper and lower quartiles: Q3-Q1

Hypothesis Testing

Keyword Description

PROBT Probability of a greater absolute value for the t value

T Student's t for testing the hypothesis that the population mean is 0

Limiting Decimal Places

Because PROC MEANS uses the BEST. format by default, procedure output can contain
unnecessary decimal places. To limit decimal places, use the MAXDEC= option and set it equal
to the length that you prefer.

Specifying Variables in PROC MEANS

By default, PROC MEANS computes statistics for all numeric variables. To specify the variables
to include in PROC MEANS output, list them in a VAR statement.

 236

Group Processing Using the CLASS Statement

Include a CLASS statement , specifying variable names, in order to group PROC MEANS output
by variable values. Statistics are not computed for the CLASS variables.

Group Processing Using the BY Statement

Include a BY statement , specifying variable names, in order to group PROC MEANS output by
variable values. Your data must be sorted according to those variables. Statistics are not
computed for the BY variables.

Creating a Summarized Data Set Using PROC MEANS

You can create an output SAS data set that contains summarized variables by using the
OUTPUT statement in PROC MEANS. When you use the OUTPUT statement without specifying
the statistic-keyword= option, the summary statistics N, MEAN, STD, MIN, and MAX are
produced for all of the numeric variables or for all of the variables that are listed in a VAR
statement.

Creating a Summarized Data Set Using PROC SUMMARY

You can also create a summarized output data set by using PROC SUMMARY. The PROC
SUMMARY code for producing an output data set is exactly the same as the code for producing
an output data set with PROC MEANS. The difference between the two procedures is that PROC
MEANS produces a report by default, whereas PROC SUMMARY produces an output data set by
default.

The FREQ Procedure

The FREQ procedure is a descriptive procedure as well as a statistical procedure that produces
oneway and n-way frequency tables. It concisely describes your data by reporting the distribution
of variable values.

Specifying Variables

By default, the FREQ procedure creates frequency tables for every variable in your data set. To
specify the variables to analyze, include them in a TABLES statement.

Creating Two-Way Tables

When a TABLES statement contains two variables joined by an asterisk (*), PROC FREQ
produces crosstabulation tables. The resulting table displays values for
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

Creating N-Way Tables

Crosstabulations can include more than two variables. When three or more variables are joined in
a TABLES statement, the result is a series of two-way tables that are grouped by the values of
the first two variables that are listed. You can use the CROSSLIST option to format your tables in
ODS column format.

 237

Creating Tables in List Format

To reduce the bulk of n-way table output, add a slash (/) and the LIST option to the end of the
TABLES statement. PROC FREQ then prints compact, multicolumn lists instead of a series of
tables.

Suppressing Table Information

You can suppress the display of specific statistics by adding a slash (/) and one or more options
to the TABLES statement:
� NOFREQ suppresses cell frequencies.
� NOPERCENT suppresses cell percentages.
� NOROW suppresses row percentages.
� NOCOL suppresses column percentages.

Points to Remember
� In PROC MEANS, use a VAR statement to limit output to relevant variables. Exclude

statistics for nominal variables such as ID or ProductCode .
� By default, PROC MEANS prints the full width of each numeric variable. Use the

MAXDEC= option to limit decimal places and to improve legibility.
� Data must be sorted for BY-group processing. You might need to run PROC SORT

before using PROC MEANS with a BY statement.
� PROC MEANS and PROC SUMMARY produce the same results; however, the default

output is different. PROC MEANS produces a report, whereas PROC SUMMARY produces
an output data set.

� If you do not include a TABLES statement, PROC FREQ produces statistics for every
variable in the data set.

� Variables that have continuous numeric values can create a large amount of output. Use
a TABLES statement to exclude such variables, or group their values by applying a
FORMAT statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. The default statistics produced by the MEANS proced ure are n-count, mean,
minimum, maximum, and

a. median.
b. range.
c. standard deviation.
d. standard error of the mean.

2. Which statement will limit a PROC MEANS analysis to the variables Boarded ,
Transfer , and Deplane ?

a. by boarded transfer deplane;
b. class boarded transfer deplane;
c. output boarded transfer deplane;
d. var boarded transfer deplane;

3. The data set Survey.Health includes the following v ariables. Which is a poor
candidate for PROC MEANS analysis?

a. IDnum
b. Age

 238

c. Height
d. Weight

4. Which of the following statements is true regarding BY-group processing?
a. BY variables must be either indexed or sorted.
b. Summary statistics are computed for BY variables .
c. BY-group processing is preferred when you are ca tegorizing data that

contains few variables.
d. BY-group processing overwrites your data set wit h the newly grouped

observations.

5. Which group processing statement produced the PROC MEANS output shown
below?

Surviv
e

Se
x

N
O
bs

Variabl
e

N Mea
n

Std
Dev

Minimu
m

Maximu
m

Arterial 4 92.5 10.5 83.0 103.0

Heart 4 111.
0

53.4 54.0 183.0

Cardia
c

4 176.
8

75.2 95.0 260.0

DIED 1 4

Urinary 4 98.0 186.
1

0.0 377.0

Arterial 6 94.2 27.3 72.0 145.0

Heart 6 103.
7

16.7 81.0 130.0

Cardia
c

6 318.
3

102.
6

156.0 424.0

 2 6

Urinary 6 100.
3

155.
7

0.0 405.0

Arterial 5 77.2 12.2 61.0 88.0

Heart 5 109.
0

32.0 77.0 149.0

Cardia
c

5 298.
0

139.
8

66.0 410.0

SURV 1 5

Urinary 5 100.
8

60.2 44.0 200.0

Arterial 5 78.8 6.8 72.0 87.0

Heart 5 100.
0

13.4 84.0 111.0

 2 5

Cardia
c

5 330.
2

87.0 256.0 471.0

 239

Urinary 5 111.
2

152.
4

12.0 377.0

a. class sex survive;
b. class survive sex;
c. by sex survive;
d. by survive sex;

6. Which program can be used to create the following o utput?

Se
x

N
O
b
s

Varia
ble

N Mean Std Dev Minimum Maximu
m

Age 1
1

48.90909
09

13.30755
08

16.00000
00

63.00000
00

Height 1
1

63.90909
09

2.119176
5

61.00000
00

68.00000
00

F 11

Weigh
t

1
1

150.4545
455

18.44648
28

102.0000
000

168.0000
000

Age 9 44.00000
00

12.38951
17

15.00000
00

54.00000
00

Height 9 70.66666
67

2.645751
3

66.00000
00

75.00000
00

M 9

Weigh
t

9 204.2222
222

30.28934
54

140.0000
000

240.0000
000

a. proc means data=clinic.diabetes;

b. var age height weight;

c. class sex;

d. output out=work.sum_gender

e. mean=AvgAge AvgHeight AvgWeight;

f. run;

g. proc summary data=clinic.diabetes print;

h. var age height weight;

i. class sex;

j. output out=work.sum_gender

k. mean=AvgAge AvgHeight AvgWeight;

run;

l. proc means data=clinic.diabetes noprint;

m. var age height weight;

n. class sex;

o. output out=work.sum_gender

p. mean=AvgAge AvgHeight AvgWeight;

 240

q. run;
r. Both a and b.

7. By default, PROC FREQ creates a table of frequencie s and percentages for which
data set variables?

a. character variables
b. numeric variables
c. both character and numeric variables
d. none: variables must always be specified

8. Frequency distributions work best with variables th at contain
a. continuous values.
b. numeric values.
c. categorical values.
d. unique values.

9. Which PROC FREQ step produced this two-way table?

a. proc freq data=clinic.diabetes;

b. tables height weight;

c. format height htfmt. weight wtfmt.;r

d. un;

e. proc freq data=clinic.diabetes;

f. tables weight height;

g. format weight wtfmt. height htfmt.;

h. run;

i. proc freq data=clinic.diabetes;

j. tables height*weight;

k. format height htfmt. weight wtfmt.;

l. run;

 241

m. proc freq data=clinic.diabetes;

n. tables weight*height;

o. format weight wtfmt. height htfmt.;

p. run;

10.

Which PROC FREQ step produced this table?

a. proc freq data=clinic.diabetes;

b. tables sex weight / list;

c. format weight wtfmt.;

d. run;

e. proc freq data=clinic.diabetes;

f. tables sex*weight / nocol;

g. format weight wtfmt.;

h. run;

i. proc freq data=clinic.diabetes;

j. tables sex weight / norow nocol;

k. format weight wtfmt.;

l. run;

m. proc freq data=clinic.diabetes;

n. tables sex*weight / nofreq norow nocol;

o. format weight wtfmt.;

p. run;

Answers

1. Correct answer: c

By default, the MEANS procedure produces the n-cout, mean, minimum, and standard
deviation.

2. Correct answer: d

To specify the variables that PROC MEANS analyzes, add a VAR statement and list the
variable names.

 242

3. Correct answer: a

Unlike Age , Height , or Weight , the values of IDnum are unlikely to yield any useful
statistics.

4. Correct answer: a

Unlike CLASS processing, BY-group processing requires that your data already be indexed
or sorted in the order of the BY variables. You might need to run the SORT procedure before
using PROC MEANS with a BY group.

5. Correct answer: b

A CLASS statement produces a single large table, whereas BY-group processing creates a
series of small tables. The order of the variables in the CLASS statement determines their
order in the output table.

6. Correct answer: d

You can use either PROC MEANS or PROC SUMMARY to create the table. Adding a PRINT
option to the PROC SUMMARY statement produces the same reports as if you used PROC
MEANS.

7. Correct answer: c

By default, the PROC FREQ creates a table for all variables in a data set.

8. Correct answer: c

Both continuous values and many unique values can result in lengthy and meaningless
tables. Frequency distributors work best with categorical values.

9. Correct answer: d

An asterisk is used to join the variables in a two-way TABLES statement. The first variable
forms the table rows, and the second variable forms the table columns.

10. Correct answer: d

An asterisk is used to join the variables in crosstabulation tables. The only results that are
shown in this table are cell percentages. The NOFREQ option suppresses cell frequencies,
the NOROW option suppresses row percentages, and the NOCOL option suppresses column
percentages.

 243

Chapter 10: Producing HTML Output

Overview

Introduction

In previous chapters, you've seen both traditional SAS listing output and HTML output. When you
set options to create HTML output, SAS uses Output Delivery System (ODS) statements to
generate the output.

Using ODS, you can create, customize, and manage HTML output in any operating environment
by submitting programming statements. After you create HTML files, you can view them using
Internet Explorer, Netscape Navigator, or any Web browser that fully supports HTML 3.2.

This chapter shows you how to create and view HTML output using ODS. You also learn how to
apply styles to ODS output.

Warning By default, all code that you submit to SAS Enterprise Guide has ODS

statements included to create HTML output. Before you submit your own
ODS statements, you must turn off this default behavior. The practice
programs on your companion CD include instructions for turning off the
default behavior.

Objectives

In this chapter, you learn to
� open and close ODS destinations
� create a simple HTML file with the output of one or more procedures
� create HTML output with a linked table of contents in a frame
� use options to specify links and file paths
� view HTML output
� apply styles to HTML output.

The Output Delivery System

Before you learn to write ODS programming statements, it's helpful to understand a little about
ODS.

Advantages of ODS

 244

ODS gives you formatting options and makes procedure output much more flexible. With ODS,
you can easily create output in a variety of formats, including

� HTML output

Obs ID Name Fee

1 2458 Murray, W 85.20

2 2462 Almers, C 124.80

3 2501 Bonaventure, T 149.75

4 2523 Johnson, R 149.75

5 2539 LaMance, K 124.80

6 2544 Jones, M 124.80

� An output data set of procedure results

VarName Quantile Estimate

RestHR 100% Max 80

RestHR 99% 80

RestHR 95% 79

RestHR 90% 78

RestHR 75% Q3 76

RestHR 50% Median 72

RestHR 25% Q1 70

RestHR 10% 68

� Traditional SAS listing output

� The SAS System

�

� Obs ID Name Fee

� 1 2458 Murray, W 85.20

� 2 2462 Almers, C 124.80

� 3 2501 Bonaventure, T 149.75

� 4 2523 Johnson, R 149.75

� 5 2539 LaMance, K 124.80

� 6 2544 Jones, M 124.80

Also, ODS holds your output in its component parts (data and table definition) so that numerical
data retains its full data precision.

Let's see how ODS creates output.

How ODS Works

 245

When you submit your ODS statements and the SAS program that creates your output, ODS
does the following:

1. ODS creates your output in the form of output objects.

Each output object contains the results of a procedure or DATA step (the data
component) and can also contain information about how to render the results (the
table definition).

2. ODS sends the output object to the ODS destination(s) that you specify and creates
formatted output as specified by the destination. For example, when the Listing and
HTML destinations are open, ODS creates Listing and HTML output.

SAS Windowing
Environment

In the SAS windowing environment, ODS also
creates a link to each output object in the
Results window and identifies each output
object by the appropriate icon.

Opening and Closing ODS Destinations

ODS Destinations

You use ODS statements to specify destinations for your output. Each destination creates a
specific type of formatted output. The table that follows lists the ODS destinations that are
supported.

This destination… Produces…

HTML output that is formatted in HyperText Markup Language

 246

This destination… Produces…

(HTML)

Listing output that is formatted like traditional SAS procedure (listing)
output

Markup Language Family output that is formatted using markup languages such as
Extensible Markup Language (XML)

ODS Document a hierarchy of output objects that enables you to render
multiple ODS output without re-running procedures

Output SAS data sets

Printer Family output that is formatted for a high-resolution printer, such as
PostScript (PS), Portable Document Format (PDF), or Printer
Control Language (PCL) files

RTF Rich Text Format output for use with Microsoft Word

Note In this chapter, we will discuss the Listing

destination and the HTML destination. For
information about all ODS destinations,
see the SAS documentation for the
Output Delivery System.

Using Statements to Open and Close ODS Destinations

For each type of formatted output that you want to create, you use an ODS statement to open the
destination. The exception is the Listing destination, which is open by default. At the end of your
program, you use another ODS statement to close the destination so that you can access your
output.

General form, ODS statement to open and close desti nations:

ODS open-destination;

ODS close-destination CLOSE;

where
� open-destination is a keyword and any required options for the type of output that you

want to create, such as
o HTML FILE= 'html-file-pathname'
o LISTING.

� close-destination is a keyword for the type of output.

You can issue ODS statements in any order, depending on whether you need to open or close
the ODS destination. Most ODS destinations are closed by default, and you open them at the
beginning of your program and close them at the end. The exception is the Listing destination,
which is open by default.

 247

Example

The following program creates SAS listing output because the Listing destination is open by
default. No other ODS destinations are open, so no other output formats are produced.

proc print data=sasuser.mydata;

run;

The following program produces HTML and listing output:

ods html body='c:\mydata.html';

proc print data=sasuser.mydata;

run;

ods html close;

Note This example is meant to demonstrate how you open and close ODS

destinations. You learn the specifics of creating HTML output later in this
chapter.

Closing the Listing Destination

As you have learned, the Listing destination is open by default. Because open destinations use
system resources, it's a good idea to close the Listing destination at the beginning of your
program if you don't want to produce listing output. Here is an example:

 ods listing close;

The Listing destination remains closed until you end your current SAS session or until you re-
open the destination. It's a good programming practice to re-set ODS to listing output (the default
setting) at the end of your programs. Here is an example:

 ods listing;

Example

The following program produces only HTML output:

 ods listing close;

 ods html body='c:\mydata.html';

 proc print data=sasuser.mydata;

 run;

 ods html close;

ods listing;

Closing Multiple ODS Destinations Concurrently

 248

One of the features of ODS is that you can produce output in multiple formats concurrently by
opening each ODS destination at the beginning of the program.

When you have more than one open ODS destination, you can use the keyword _ALL_ in the
ODS CLOSE statement to close all open destinations concurrently.

Example

The program below opens the HTML and PDF destinations before the PROC step and closes all
ODS destinations at the end of the program:

ods html file= 'HTML-file-pathname';

ods pdf file=' PDF-file-pathname ';

proc print data=sasuser.admit;

run;

ods _all_ close;

ods listing;

Notice that the last ODS statement re-opens the Listing destination so that ODS returns to
producing listing output for subsequent DATA or PROC steps in the current session.

Creating Simple HTML

To create HTML output, you open the HTML destination using the ODS HTML statement .

General form, ODS HTML statement:

ODS HTML BODY=file-specification;
ODS HTML CLOSE;

where file-specification identifies the file that contains the HTML output. The specification can be
� an HTML filename (include the complete pathname if you want to save the HTML file to a

specific location)
� a fileref (file shortcut) that has been assigned to an HTML file
� a SAS catalog entry in the form entry-name.html.

Note FILE= can also be used to specify the file that contains the HTML output.

FILE= is an alias for BODY=.

Example

The program below creates PROC PRINT output in an HTML file. The BODY= option specifies
the file F:\admit.htm l in the Windows operating environment as the file that contains the PROC
PRINT results.

ods listing close;

ods html body='f:\admit.html';

proc print data=clinic.admit label;

 var sex age height weight actlevel;

 label actlevel='Activity Level';

run;

 249

ods html close;

ods listing;

Notice that ODS statements close the Listing destination and open the HTML destination. Then,
after the RUN statement, you close the HTML destination and open the Listing destination.

The HTML file admit.htm l contains the results of all procedure steps between the ODS HTML
statement and ODS HTML CLOSE statement.

Obs Sex Age Height Weight ActivityLevel

1 M 27 72 168 HIGH

2 F 34 66 152 HIGH

3 F 31 61 123 LOW

4 F 43 63 137 MOD

5 M 51 71 158 LOW

6 M 29 76 193 HIGH

7 F 32 67 151 MOD

8 M 35 70 173 MOD

9 M 34 73 154 LOW

10 F 49 64 172 LOW

11 F 44 66 140 HIGH

12 F 28 62 118 LOW

13 M 30 69 147 MOD

14 F 40 69 163 HIGH

15 M 47 72 173 MOD

16 M 60 71 191 LOW

17 F 43 65 123 MOD

18 M 25 75 188 HIGH

19 F 22 63 139 LOW

20 F 41 67 141 HIGH

21 M 54 71 183 MOD

Viewing Your HTML Output

SAS Windowing
Environment

If you're working in the SAS windowing environment,
when you submit the program, the body file will
automatically appear in the SAS internal browser or
your preferred Web browser.

SAS Enterprise Guide When you submit the program, two HTML results will appear

in the Project window. One uses the HTML style that is
active in SAS Enterprise Guide. The other uses the ODS
statements from the code that you submitted and creates a

 250

temporary file labeled with the path and filename that you
designated. It is similar in style to the actual HTML file that
gets created in the location that you specify.

Creating HTML Output from Multiple Procedures

You can also use the ODS HTML statement to direct the results from multiple procedures to the
same HTML file.

The program below generates HTML output for the PRINT and TABULATE procedures. The
results for both procedures are saved to the file C:\Records\data.html (in the Windows operating
system).

SAS Windowing
Environment

In the SAS windowing environment, a link for each
output object (one for each procedure) appears in
the Results window.

ods listing close;

ods html body='c:\records\data.html';

proc print data=clinic.admit label;

 var id sex age height weight actlevel;

 label actlevel='Activity Level';

run;

proc tabulate data=clinic.stress2;

 var resthr maxhr rechr;

 table min mean, resthr maxhr rechr;

run;

ods html close;

ods listing;

The following is a representation of the HTML file containing the results from the program above.
Notice that the results from each procedure are appended.

The SAS System

Obs ID Sex Age Height Weight Activity Level

1 2458 M 27 72 168 HIGH

2 2462 F 34 66 152 HIGH

3 2501 F 31 61 123 LOW

4 2523 F 43 63 137 MOD

5 2539 M 51 71 158 LOW

6 2544 M 29 76 193 HIGH

7 2552 F 32 67 151 MOD

8 2555 M 35 70 173 MOD

9 2563 M 34 73 154 LOW

10 2568 F 49 64 172 LOW

 251

The SAS System

Obs ID Sex Age Height Weight Activity Level

11 2571 F 44 66 140 HIGH

12 2572 F 28 62 118 LOW

13 2574 M 30 69 147 MOD

14 2575 F 40 69 163 HIGH

15 2578 M 47 72 173 MOD

16 2579 M 60 71 191 LOW

17 2584 F 43 65 123 MOD

18 2586 M 25 75 188 HIGH

19 2588 F 22 63 139 LOW

20 2589 F 41 67 141 HIGH

21 2595 M 54 71 183 MOD

The SAS System

 RestHR MaxHR RecHR

Min 65.00 152.00 108.00

Mean 72.95 171.10 128.95

Creating HTML Output with a Table of Contents

So far in this chapter, you've used the BODY= option to create a simple HTML file containing your
procedure output. Suppose you want to create an HTML file that has a table of contents with links
to the output of each specific procedure. You can do this by specifying additional files in the ODS
HTML statement.

General form, ODS HTML statement to create a linked table of contents:

ODS HTML
 BODY=body-file-specification
 CONTENTS=contents-file-specification
 FRAME=frame-file-specification;
ODS HTML CLOSE;

where
� body-file-specification is the name of an HTML file that contains the procedure output.
� contents-file-specification is the name of an HTML file that contains a table of contents

with links to the procedure output.
� frame-file-specification is the name of an HTML file that integrates the table of contents

and the body file. If you specify FRAME=, you must also specify CONTENTS=.

Note To direct the HTML output to a specific storage location, specify the complete

pathname of the HTML file in the file-specification.

 252

Example

In the program below,
� the BODY= option creates data.html in the c:\records directory. The body file contains

the results of the two procedures.
� the CONTENTS= option creates toc.html in the c:\records directory. The table of

contents file has links to each procedure output in the body file.
� the FRAME= option creates frame.html in the c:\records directory. The frame file

integrates the table of contents and the body file.

ods listing close;

ods html body='c:\records\data.html'

 contents='c:\records\toc.html'

 frame='c:\records\frame.html';

proc print data=clinic.admit label;

 var id sex age height weight actlevel;

 label actlevel='Activity Level';

run;

proc print data=clinic.stress2;

 var id resthr maxhr rechr;

run;

ods html close;

ods listing;

The frame file, frame.html , is shown below.

 253

Viewing Frame Files

SAS Windowing
Environment

In the SAS windowing environment, the Results
window does not display links to frame files. Only the
body file will automatically appear in the internal
browser or your preferred Web browser. To view the
frame file that integrates the body file and the table of
contents, select File →Open from within the internal
browser or your preferred Web browser. Then open
the frame file that you specified using FRAME=. In
the example above, this file is frame.html , which is
stored in the Records directory in the Windows
environment.

SAS Enterprise Guide In SAS Enterprise Guide, use Windows Explorer to locate

the frame file frame.html in the Records directory, and then
double-click the file to open it in your browser. If you are
using SAS Enterprise Guide 4.1, you can double-click the
shortcut to frame.html in the Project Explorer window.

Using the Table of Contents

The table of contents created by the CONTENTS= option contains a numbered heading for each
procedure that creates output. Below each heading is a link to the output for that procedure.

On some browsers, you can select a heading to contract or expand the table of contents.

Using Options to Specify Links and Paths

When ODS generates HTML files for the body, contents, and frame, it also generates links
between the files by using the HTML filenames that you specify in the ODS HTML statement. If
you specify complete pathnames, then ODS uses those pathnames in the links it generates.

 254

The ODS statement below creates a frame file that has links to C:\Records\toc.html and
C:\Records\data.html , and a contents file that has links to C:\Records\data.html .

ods html body='c:\records\data.html'

 contents='c:\records\toc.html'

 frame='c:\records\frame.html';

A portion of the source code for the HTML file frame.html is shown below. Notice that the links
have the complete pathnames specified in the file specifications for the contents and body files.
Links in the contents file contain the same pathname.

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC=" c:\records\toc .html"

 NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC=" c:\records\data .html"

 NAME="body" SCROLLING=auto>

These links work when you are viewing the HTML files locally, but if you want to place these files
on a Web server so that other people can access them, then the links need to include either the
complete URL for an absolute link or the HTML filename for a relative link.

The URL= Suboption

By specifying the URL= suboption in the BODY= or CONTENTS= file specification, you can
provide a URL that ODS uses in all the links that it creates to the file. You can use the URL=
suboption in any ODS file specification except FRAME= (because no ODS file references the
frame file).

General form, URL= suboption in a file specificatio n:

(URL='Uniform-Resource-Locator')

where Uniform-Resource-Locator is the name of an HTML file or the full URL of an HTML file.
ODS uses this URL instead of the filename in all the links and references that it creates that point
to the file.

Info The URL= suboption is useful for building HTML files that can be moved from

one location to another. If the links from the contents and page files are
constructed with a simple URL (one name), they work as long as the contents,
page, and body files are all in the same location.

Example: Relative URLs

In this ODS HTML statement, the URL= suboption specifies only the HTML filename. This is the
most common style of linking between files because maintenance is easier and the files can be
moved as long as they all remain in the same directory or storage location.

ods html body='c:\records\data.html' (url='data.html')

 contents='c:\records\toc.html' (url='toc.html')

 frame='c:\records\frame.html';

 255

The source code for frame.html has only the HTML filename as specified in the URL=
suboptions for the body and contents files.

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC=" toc .html"

 NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC=" data .html"

 NAME="body" SCROLLING=auto>

Example: Absolute URLs

Alternatively, in this ODS HTML statement, the URL= suboptions specify complete URLs by using
HyperText Transfer Protocol (HTTP). These files can be stored in the same or different locations.

ods html body='c:\records\data.html'

 (url='http://mysite.com/myreports/data.htm l')

 contents='c:\records\toc.html'

 (url='http://mysite.com/mycontents/toc.htm l')

 frame='c:\records\frame.html';

As you would expect, the source code for frame.html has the entire HTTP addresses that you
specified in the URL= suboptions for the body and contents files.

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0"
SRC="http://mysite.com/myreports/toc.html "

 NAME="contents" SCROLLING=auto>

<FRAME MARGINWIDTH="9" MARGINHEIGHT="0"
SRC="http://mysite.com/myreports/data.html "

 NAME="body" SCROLLING=auto>

Note When you use the URL= suboption to specify a complete URL, you might need

to move your files to that location before you can view them.

The PATH= Option

So far, you've learned to specify the complete pathname for HTML files in the BODY=,
CONTENTS=, and FRAME= specifications when you want to save HTML files to specific
locations. To streamline your ODS HTML statement, you can also use the PATH= option to
specify the location where you want to store your HTML output, and you can use the URL=NONE
to prevent ODS from using the pathname in any links it creates in your files.

General form, PATH= option:

PATH=file-specification <(URL='Uniform-Resource-Locator' | NONE)>

where
� file-location-specification identifies the location where you want HTML files to be saved. It

can be one of the following:
o the complete pathname to an aggregate storage location, such as a directory or

partitioned data set
o a fileref (file shortcut) that has been assigned to a storage location

 256

o a SAS catalog (libname.catalog).
� Uniform-Resource-Locator provides a URL for links in the HTML files that ODS

generates. If you specify the keyword NONE, no information from the PATH= option appears
in the links or references.

If you do not use the URL= suboption, then information from the PATH= option is added to
links and references in the files that are created.

Example: PATH= Option with URL=NONE

In the program below, the PATH= option directs the files data.html , toc.html , and frame.html to
the C:\Records directory in the Windows operating environment. The links from the frame file to
the body and contents files contain only the HTML filenames data.html and toc.html .

ods listing close;

ods html path='c:\records' (url=none)

 body='data.html'

 contents='toc.html'

 frame='frame.html';

proc print data=clinic.admit;

run;

proc print data=clinic.stress2;

run;

ods html close;

ods listing;

This program generates the same files and links as the previous example in which you learned to
use the URL= suboption with the BODY= and CONTENTS= file specifications. However, it's a bit
simpler to specify the path only once in the PATH= option and to specify URL=NONE.

Info If you plan to move your HTML files, you should specify URL=NONE with the

PATH= option to prevent information from the PATH= option from creating URLs
that are invalid or incorrect.

Example: PATH= Option without the URL= Suboption

In the program below, the PATH= option directs the files data.html , toc.html , and frame.html to
the C:\Records directory in the Windows operating environment. The links from the frame file to
the body and contents files contain the complete pathname, c:\records\data.html and
c:\records\toc.html :

ods listing close;

 ods html path='c:\records'

 body='data.html'

 contents='toc.html'

 frame='frame.html';

proc print data=clinic.admit;

 run;

 proc print data=clinic.stress2;

 257

 run;

 ods html close;

 ods listing;

Example: PATH= Option with a Specified URL

In the program below, the PATH= option directs the files data.html , toc.html , and frame.html to
the C:\Records directory in the Windows operating environment. The links from the frame file to
the body and contents files contain the specified URL, http://mysite.com/myreports/data.html
and http://mysite.com/myreports/toc.html :

ods listing close;

ods html path='c:\records'(url='http://mysite.com/myreports/ ')

 body='data.html'

 contents='toc.html'

 frame='frame.html';

proc print data=clinic.admit;

run;

proc print data=clinic.stress2;

run;

ods html close;

ods listing;

Changing the Appearance of HTML Output

The STYLE= Option

You can change the appearance of your HTML output by using the STYLE= option in the ODS
HTML statement.

General form, STYLE= option:

STYLE=style-name

where style-name is the name of a valid SAS or user-defined style definition.

Note Don't enclose style-name in quotation marks.

Example

Predefined styles are shipped with SAS. In the program below, the STYLE= option applies the
Brick style to the output for both PROC PRINT steps.

ods listing close;

 ods html body='c:\records\data.html'(url='data.htm l')

 contents='c:\records\toc.html'(url='toc.h tml')

 frame='c:\records\frame.html'

 258

 style=brick;

proc print data=clinic.admit label;

 var id sex age height weight actlevel;

 label actlevel='Activity Level';

run;

 proc print data=clinic.stress2;

 var id resthr maxhr rechr;

run;

 ods html close;

 ods listing;

The following example shows PROC PRINT output with the Brick style applied.

Note Your site might have its own customized style definitions.

Additional Features

Customizing HTML Output

You've seen that you can use the STYLE= option to apply predefined styles to your HTML output.
However, you might want to further customize your results.

ODS provides ways for you to customize HTML output using definitions for tables, columns,
headers, and so forth. These definitions describe how to render the HTML output or part of the
HTML output. You can create style definitions using PROC TEMPLATE.

Summary

Text Summary

 259

The OUTPUT Delivery System

The Output Delivery System (ODS) makes new report formatting options available in SAS. ODS
separates your output into component parts so that the output can be sent to any ODS
destination that you specify.

Opening and Closing ODS Destinations

Each ODS destination creates a different type of formatted output. By default, the Listing
destination is open and SAS creates listing output. Because an open destination uses system
resources, it's a good idea to close the Listing destination if you don't need to create listing
output. By using ODS statements, you can create multiple output formats concurrently. When you
have several ODS destinations open, you can close them all by using the ODS _ALL_ CLOSE
statement .

Creating Simple HTML Output

You use the ODS HTML statement to open the HTML destination. Use the BODY= or FILE=
options to create an HTML body file containing procedure results. You can also use the ODS
HTML statement to direct the HTML output from multiple procedures to the same HTML file.

Creating HTML Output with a Table of Contents

In order to manage multiple pieces of procedure output, you can use the CONTENTS= and
FRAME= options with the ODS HTML statement to create a table of contents that links to your
HTML output. The table of contents contains a heading for each procedure that creates output.

Using Options to Specify Links and Paths

By specifying the URL=option in the file specification, you can provide a URL that ODS uses in
all the links that it creates to the file. You can also use the PATH= option to specify the directory
where you want to store your HTML output. When you use the PATH= option, you don't need to
specify the complete pathname for the body, contents, or frame files.

Changing the Appearance of HTML Output

You can change the appearance of your output by using the STYLE= option in the ODS HTML
statement. Several predefined styles are shipped with SAS.

Additional Features

ODS provides ways for you to customize HTML output using style definitions. Definitions are
created by using PROC TEMPLATE and describe how to render the HTML output or part of the
HTML output.

Points to Remember
� An open destination uses system resources. Therefore, it's a good idea to close the

Listing destination before you create HTML output and re-open the Listing destination after
you close the HTML destination.

� The ODS HTML CLOSE statement closes the HTML destination and is added after the
RUN statement for the procedure.

� If you use the CONTENTS= and FRAME= options, open the frame file from within your
Web browser to view the procedure output and the table of contents.

 260

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Using ODS statements, how many types of output can you generate
concurrently?

a. 1 (only listing output)
b. 2
c. 3
d. as many as you want

2. If ODS is set to its default settings, what types o f output are created by the code
below?

ods html file='c:\myhtml.htm';

ods pdf file='c:\mypdf.pdf';
a. HTML and PDF
b. PDF only
c. HTML, PDF, and listing
d. No output is created because ODS is closed by de fault.

3. What is the purpose of closing the Listing destinat ion in the code shown
below?

ods listing close;

ods html ... ;

a. It conserves system resources.

b. It simplifies your program.

c. It makes your program compatible with other hardwa re platforms.

d. It makes your program compatible with previous ver sions of SAS software.

4. When the code shown below is run, what will the fil e D:\Output\body.html
contain?

ods html body='d:\output\body.html';

proc print data=work.alpha;

run;

proc print data=work.beta;

run;

ods html close;
a. The PROC PRINT output for Work.Alpha.
b. The PROC PRINT output for Work.Beta.
c. The PROC PRINT output for both Work.Alpha and Wo rk.Beta.
d. Nothing. No output will be written to D:\Output\ body.html.

5. When the code shown below is run, what file will be loaded by the links in
D:\Output\contents.html?

ods html body='d:\output\body.html'

 contents='d:\output\contents.html'

 261

 frame='d:\output\frame.html';
a. D:\Output\body.html
b. D:\Output\contents.html
c. D:\Output\frame.html
d. There are no links from the file D:\Output\conte nts.html.

6. The table of contents created by the CONTENTS= opti on contains a numbered
heading for

a. each procedure.
b. each procedure that creates output.
c. each procedure and DATA step.
d. each HTML file created by your program.

7. When the code shown below is run, what will the fil e D:\Output\frame.html
display?

ods html body='d:\output\body.html'

 contents='d:\output\contents.html'

 frame='d:\output\frame.html';
a. The file D:\Output\contents.html.
b. The file D:\Output\frame.html.
c. The files D:\Output\contents.html and D:\Output\ body.html.
d. It displays no other files.

8. What is the purpose of the URL= suboptions shown be low?

ods html body='d:\output\body.html' (url='body.html ')

 contents='d:\output\contents.html'
(url='contents.html')

 frame='d:\output\frame.html';
a. To create absolute link addresses for loading th e files from a server.
b. To create relative link addresses for loading th e files from a server.
c. To allow HTML files to be loaded from a local dr ive.
d. To send HTML output to two locations.

9. Which ODS HTML option was used in creating the foll owing table?

a. format=brown
b. format='brown'
c. style=brown
d. style='brown'

10. What is the purpose of the PATH= option?

ods html path='d:\output' (url=none)

 body='body.html'

 contents='contents.html'

 262

 frame='frame.html';
a. It creates absolute link addresses for loading H TML files from a server.
b. It creates relative link addresses for loading H TML files from a server.
c. It allows HTML files to be loaded from a local d rive.
d. It specifies the location of HTML file output.

1. Correct answer: d

You can generate any number of output types as long as you open the ODS destination for
each type of output that you want to create.

2. Correct answer: c

Listing output is created by default, so these statements create HTML, PDF, and listing
output.

3. Correct answer: a

By default, SAS programs produce listing output. If you want only HTML output, it's a good
idea to close the Listing destination before creating HTML output, because an open
destination uses system resources.

4. Correct answer: c

When multiple procedures are run while HTML output is open, procedure output is appended
to the same body file.

5. Correct answer: a

The CONTENTS= option creates a table of contents containing links to the body file,
D:\Output\body.html .

6. Correct answer: b

The table of contents contains a numbered heading for each procedure that creates output.

7. Correct answer: c

The FRAME= option creates an HTML file that integrates the table of contents and the body
file.

8. Correct answer: b

Specifying the URL= suboption in the file specification provides a URL that ODS uses in the
links it creates. Specifying a simple (one name) URL creates a relative link address to the file.

9. Correct answer: c

You can change the appearance of HTML output by using the STYLE= option in the ODS
HTML statement. The style name doesn't need quotation marks.

10. Correct answer: d You use the PATH= option to specify the location for HTML output. When
you use the PATH= option, you don't need to specify the full pathname for the body,
contents, or frame files.

 263

Chapter 11: Creating and Managing Variables

Overview

Introduction

You've learned how to create a SAS data set from raw data that is stored in an external file.
You've also learned how to subset observations and how to assign values to variables.

This chapter shows you additional techniques for creating and managing variables. In this
chapter, you learn how to create accumulator variables, assign variable values conditionally,
select variables, and assign permanent labels and formats to variables.

O
b
s

ID Name Res
tHR

Max
HR

Rec
HR

Toler
ance

Total
Time

Cumul
ative
Total
Secon
ds
(+5,40
0)

TestLe
ngth

1 24
58

Murra
y, W

72 185 128 D 758 6,158 Normal

2 25
39

LaMan
ce, K

75 168 141 D 706 6,864 Short

3 25
72

Obero
n, M

74 177 138 D 731 7,595 Short

4 25
74

Peters
on, V

80 164 137 D 849 8,444 Long

5 25
84

Takah
ashi, Y

76 163 135 D 967 9,411 Long

Objectives

In this chapter, you learn to
� create variables that accumulate variable values
� initialize values of accumulator variables
� assign values to variables conditionally
� specify an alternative action when a condition is false
� specify lengths for variables
� delete unwanted observations
� select variables
� assign permanent labels and formats.

Creating and Modifying Variables

Accumulating Totals

It is often useful to create a variable that accumulates the values of another variable.

 264

Suppose you want to create the data set Clinic.Stress and to add a new variable, SumSec, to
accumulate the total number of elapsed seconds in treadmill stress tests.

SAS Data Set Clinic.Stress (Partial Listing)

ID Name Rest
Hr

Max
HR

Rec
HR

Time
Min

Time
Sec

Tolera
nce

TotalTi
me

24
58

Murray,
W

72 185 128 12 38 D 758

24
62

Almers, C 68 171 133 10 5 I 605

25
01

Bonavent
ure, T

78 177 139 11 13 I 673

25
23

Johnson,
R

69 162 114 9 42 S 582

25
39

LaMance,
K

75 168 141 11 46 D 706

To add the result of an expression to an accumulator variable, you can use a Sum statement in
your DATA step.

General form, Sum statement:

variable+expression;

where
� variable specifies the name of the accumulator variable. This variable must be numeric.

The variable is automatically set to 0 before the first observation is read. The variable's value
is retained from one DATA step execution to the next.

� expression is any valid SAS expression.

Warning If the expression produces a missing value, the Sum statement treats it like

a zero. (By contrast, in an assignment statement, a missing value is
assigned if the expression produces a missing value.)

Note The Sum statement is one of the few SAS statements that doesn't begin with a

keyword.

The Sum statement adds the result of the expression that is on the right side of the plus sign (+)
to the numeric variable that is on the left side of the plus sign. At the beginning of the DATA step,
the value of the numeric variable is not set to missing as it usually is when reading raw data.
Instead, the variable retains the new value in the program data vector for use in processing the
next observation.

Example

To find the total number of elapsed seconds in treadmill stress tests, you need a variable (in this
example, SumSec) whose value begins at 0 and increases by the amount of the total seconds in
each observation. To calculate the total number of elapsed seconds in treadmill stress tests, you
use the Sum statement shown below.

data clinic.stress;

 265

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 SumSec+totaltime;

run;

The value of the variable on the left side of the plus sign (here, SumSec) begins at 0 and
increases by the value of TotalTime with each observation.

SumSec = TotlaTime + Previous Total

0

758 = 758 + 0

1363 = 605 + 758

2036 = 673 + 1363

2618 = 582 + 2036

3324 = 706 + 2618

Initializing Accumulator Variables

In a previous example, the accumulator variable SumSec was initialized to 0 by default before the
first observation was read. But what if you want to initialize SumSec to a different number, such
as the total seconds from previous treadmill stress tests?

You can use the RETAIN statement to assign an initial value other than the default value of 0 to
a variable whose value is assigned by a Sum statement.

The RETAIN statement
� assigns an initial value to a retained variable
� prevents variables from being initialized each time the DATA step executes.

General form, simple RETAIN statement for initializ ing accumulator variables:

RETAIN variable initial-value;

where
� variable is a variable whose values you want to retain
� initial-value specifies an initial value (numeric or character) for the preceding variable.

Note The RETAIN statement

� is a compile-time only statement that creates variables if they do not
already exist

� initializes the retained variable to missing before the first execution of the
DATA step if you do not supply an initial value

� has no effect on variables that are read with SET, MERGE, or UPDATE
statements. (The SET and MERGE statements are discussed in later
chapters.)

 266

Example

Suppose you want to add 5400 seconds (the accumulated total seconds from a previous treadmill
stress test) to the variable SumSec in the Clinic.Stress data set when you create the data set. To
initialize SumSec with the value 5400, you use the RETAIN statement shown below:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

run;

Now the value of SumSec begins at 5400 and increases by the value of TotalTime with each
observation.

SumSec = TotlaTime + Previous Total

5400

6158 = 758 + 0

6763 = 605 + 6158

7436 = 673 + 6763

8018 = 582 + 7436

8724 = 706 + 8018

Assigning Values Conditionally

In the previous section, you created the variable SumSec by using a Sum statement to add total
seconds from a treadmill stress test. This time, let's create a variable that categorizes the length
of time that a subject spends on the treadmill during a stress test. This new variable,
TestLength , will be based on the value of the existing variable TotalTime . The value of
TestLength will be assigned conditionally.

If This Is the TotalTime Then This Is the TestLength

greater than 800 Long

750 - 800 Normal

less than 750 Short

To perform an action conditionally, use an IF-THEN statement. The IF-THEN statement executes
a SAS statement when the condition in the IF clause is true.

General form, IF-THEN statement:

 267

IF expression THEN statement;

where
� expression is any valid SAS expression
� statement is any executable SAS statement.

Example

To assign the value Long to the variable TestLength when the value of TotalTime is greater
than 800, add the following IF-THEN statement to your DATA step:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

run;

SAS executes the assignment statement only when the condition (TotalTime>800) is true. If
the condition is false, then the value of TestLength will be missing.

Comparison and Logical Operators

When writing IF-THEN statements, you can use any of the following comparison operators:

Operator Comparison Operation

= or eq equal to

^= or ne not equal to

> or gt greater than

< or lt less than

>= or ge greater than or equal to

<= or le less than or equal to

in equal to one of a list

Examples
if test <85 and time <=20

 then Status ='RETEST';

if region in ('NE','NW','SW')

 then Rate =fee-25;

 268

if target gt 300 or sales ge 50000

 then Bonus =salary*.05;

You can also use these logical operators:

Operator Logical Operation

& and

| or

^ or ~ not

Use the AND operator to execute the THEN statement if both expressions that are linked by AND
are true.

if status='OK' and type=3

 then Count+1;

if (age^=agecheck | time^=3)

 & error=1 then Test=1;

Use the OR operator to execute the THEN statement if either expression that is linked by OR is
true.

if (age^=agecheck | time^=3)

 & error=1 then Test=1;

if status='S' or cond='E'

 then Control='Stop';

Use the NOT operator with other operators to reverse the logic of a comparison.

if not(loghours<7500)

 then Schedule='Quarterly';

if region not in ('NE','SE')

 then Bonus=200;

Character values must be specified in the same case in which they appear in the data set and
must be enclosed in quotation marks.

if status= 'OK' and type=3

 then Count+1;

if status= 'S' or cond= 'E'

 then Control= 'Stop';

if not(loghours<7500)

 then Schedule= 'Quarterly';

if region not in ('NE' , 'SE')

 then Bonus=200;

Logical comparisons that are enclosed in parentheses are evaluated as true or false before they
are compared to other expressions. In the example below, the OR comparison in parentheses is
evaluated before the first expression and the AND operator are evaluated.

 269

Warning In SAS, any numeric value other than 0 or missing is true, and a value

of 0 or missing is false . Therefore, a numeric variable or expression can
stand alone in a condition. If its value is a number other than 0 or missing,
the condition is true; if its value is 0 or missing, the condition is false.

0 = False
. = False
1 = True

As a result, you need to be careful when using the OR operator with a
series of comparisons. Remember that only one comparison in a series of
OR comparisons must be true to make a condition true, and any nonzero,
nonmissing constant is always evaluated as true. Therefore, the following
subsetting IF statement is always true:

 if x=1 or 2;

SAS first evaluates x=1, and the result can be either true or false. However,
because the 2 is evaluated as nonzero and nonmissing (true), the entire
expression is true. In the following statement, however, the condition is not
necessarily true because either comparison can evaluate as true or false:

 if x=1 or x=2;

Providing an Alternative Action

Now suppose you want to assign a value to TestLength that is based on the other possible
values of TotalTime . One way to do this is to add IF-THEN statements to the other two
conditions, as shown below.

if totaltime>800 then TestLength='Long';

if 750<=totaltime<=800 then TestLength='Normal';

if totaltime<750 then TestLength='Short';

However, when the DATA step executes, each IF statement is evaluated in order, even if the first
condition is true. This wastes system resources and slows the processing of your program.

Instead of using a series of IF-THEN statements, you can use the ELSE statement to specify an
alternative action to be performed when the condition in an IF-THEN statement is false. As shown
below, you can write multiple ELSE statements to specify a series of mutually exclusive
conditions.

if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800 then TestLength='Normal';

else if totaltime<750 then TestLength='Short';

The ELSE statement must immediately follow the IF-THEN statement in your program. An ELSE
statement executes only if the previous IF-THEN/ELSE statement is false.

General form, ELSE statement:

ELSE statement;

 270

where statement is any executable SAS statement, including another IF-THEN statement.

So to assign a value to TestLength when the condition in your IF-THEN statement is false, you
can add the ELSE statement to your DATA step, as shown below:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength='Nor mal';

 else if totaltime<750 then TestLength='Short';

run;

Using ELSE statements with IF-THEN statements can save resources:
� Using IF-THEN statements without the ELSE statement causes SAS to evaluate all IF-

THEN statements.
� Using IF-THEN statements with the ELSE statement causes SAS to execute IF-THEN

statements until it encounters the first true statement. Subsequent IF-THEN statements are
not evaluated.

For greater efficiency, construct your IF-THEN/ELSE statements with conditions of decreasing
probability.

Note Remember that you can use PUT statements to test your conditional logic.

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength='Nor mal';

 else put 'NOTE: Check this Length: ' totaltime=;

run;

Specifying Lengths for Variables

Previously, you added IF-THEN and ELSE statements to a DATA step in order to create the
variable TestLength . Values for TestLength were assigned conditionally, based on the value
for TotalTime .

 271

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxH R 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-4 3

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength= 'Normal';

 else if totaltime<750 then TestLength='Short ';

run;

But look what happens when you submit this program.

During compilation, when creating a new character variable in an assignment statement, SAS
allocates as many bytes of storage space as there are characters in the first value that it
encounters for that variable. In this case, the first value for TestLength occurs in the IF-THEN
statement, which specifies a four-character value (Long). So TestLength is assigned a length of
4, and any longer values (Normal and Short) are truncated.

Variable TestLength (Partial Listing)

TestLength

Norm

Shor

Shor

Shor

Norm

Shor

Long

...

The example above assigns a character constant as the value of the new variable. The table that
follows lists more examples of the default type and length that SAS assigns when the type and
length of a variable are not explicitly set.

Expression Example Resulting Type
of X

Resulting
Length of
X

Explanation

Character
variable

length a $ 4;

x=a;

Character
variable

4 Length of
source variable

Character
literal
(character

x='ABC';

x='ABCDE';

Character
variable

3 Length of first
literal
(constant)

 272

Expression Example Resulting Type
of X

Resulting
Length of
X

Explanation

constant) encountered

Concatenation
of variables

length a $ 4

b $ 6

c $ 2;

x=a||b||c;

Character
variable

12 Sum of the
lengths of all
variables

Concatenation
of variables
and literals

length a $ 4;

x=a||'CAT';

x=a||'CATNIP';

Charactervariable 7 Sum of the
lengths of
variables and
literals
(constants)
encountered in
first
assignment
statement

Numeric
variable

length a 4;

x=a;

Numeric variable 8 Default
numeric length
(8 bytes unless
otherwise
specified)

Note: In
general, it is
not
recommended
that you
change the
default length
of numeric
variables, as
this can affect
numeric
precision. See
the SAS
documentation
for your
operating
environment
for more
information.

You can use a LENGTH statement to specify a length (the number of bytes) for TestLength
before the first value is referenced elsewhere in the DATA step.

General form, LENGTH statement:

LENGTH variable(s) <$> length;

where

 273

� variable(s) names the variable(s) to be assigned a length
� $ is specified if the variable is a character variable
� length is an integer that specifies the length of the variable.

Examples
length Type $ 8;

length Address1 Address2 Address3 $ 200;

length FirstName $ 12 LastName $ 16;

Within your program, you include a LENGTH statement to assign a length to accommodate the
longest value of the variable TestLength . The longest value is Normal, which has six
characters. Because TestLength is a character variable, you must follow the variable name
with a dollar sign ($).

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxH R 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-4 3

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength= 'Normal';

 else if totaltime<750 then TestLength='Short ';

run;

Note Make sure the LENGTH statement appears before any other reference to the

variable in the DATA step. If the variable has been created by another
statement, then a later use of the LENGTH statement will not change its size.

Now that you have added the LENGTH statement to your program, the values of TestLength
are no longer truncated.
Variable TestLength (Partial Listing)

TestLength

Normal

Short

Short

Short

Normal

Short

Long

 274

Variable TestLength (Partial Listing)

TestLength

...

Subsetting Data

Deleting Unwanted Observations

So far in this chapter, you've learned to use IF-THEN statements to execute assignment
statements conditionally. But you can specify any executable SAS statement in an IF-THEN
statement. For example, you can use an IF-THEN statement with a DELETE statement to
determine which observations to omit from the data set that SAS is creating as it reads raw data.
� The IF-THEN statement executes a SAS statement when the condition in the IF clause is

true.
� The DELETE statement stops processing the current observation.

General form, DELETE statement:

DELETE;

To conditionally execute a DELETE statement, you submit a statement in the following general
form:

IF expression THEN DELETE;

If the expression is
� true , the DELETE statement executes, and control returns to the top of the DATA step

(the observation is deleted).
� false , the DELETE statement does not execute, and processing continues with the next

statement in the DATA step.

Example

The IF-THEN and DELETE statements below omit any observations whose values for RestHR
are lower than 70.

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxH R 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-4 3

 Tolerance $ 45;

 if resthr<70 then delete;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 275

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength= 'Normal';

 else if totaltime<750 then TestLength='Short ';

run;

Selecting Variables with the DROP= and KEEP= Data S et Options

Sometimes you might need to read and process fields that you don't want to keep in your data
set. In this case, you can use the DROP= and KEEP= data set options to specify the variables
that you want to drop or keep.

Use the KEEP= option instead of the DROP= option if more variables are dropped than kept. You
specify data set options in parentheses after a SAS data set name.

General form, DROP= and KEEP= data set options:

(DROP=variable(s))
(KEEP=variable(s))

where
� the DROP= or KEEP= option, in parentheses, follows the name of the data set that

contains the variables to be dropped or kept
� variable(s) identifies the variables to drop or keep.

Example

Suppose you are interested in keeping only the new variable TotalTime and not the original
variables TimeMin and TimeSec . You can drop TimeMin and TimeSec when you create the
Stress data set.

data clinic.stress(drop=timemin timesec);

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxH R 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-4 3

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength= 'Normal';

 else if totaltime<750 then TestLength='Short ';

run;

SAS Data Set Clinic.Stress

 276

ID Name Rest
HR

Max
HR

Rec
HR

Tolera
nce

TotalTi
me

Sum
Sec

TestLen
gth

24
58

Murray,
W

72 185 128 D 758 6158 Normal

25
39

LaManc
e, K

75 168 141 D 706 6864 Short

25
52

Rebers
on, P

69 158 139 D 941 7805 Long

25
72

Oberon
, M

74 177 138 D 731 8536 Short

25
74

Peterso
n, V

80 164 137 D 849 9385 Long

25
84

Takaha
shi, Y

76 163 135 D 967 10352 Long

Another way to exclude variables from your data set is to use the DROP statement or the KEEP
statement . Like the DROP= and KEEP= data set options, these statements drop or keep
variables. However, the DROP statement differs from the DROP= data set option in the following
ways:
� You cannot use the DROP statement in SAS procedure steps.
� The DROP statement applies to all output data sets that are named in the DATA

statement.
� To exclude variables from some data sets but not from others, place the appropriate

DROP= data set option next to each data set name that is specified in the DATA statement.

The KEEP statement is similar to the DROP statement, except that the KEEP statement specifies
a list of variables to write to output data sets. Use the KEEP statement instead of the DROP
statement if the number of variables to keep is significantly smaller than the number to drop.

General form, DROP and KEEP statements:

DROP variable(s);

KEEP variable(s);

where variable(s) identifies the variables to drop or keep.

Example

The two programs below produce the same results. The first example uses the DROP= data set
option; the second example uses the DROP statement.

data clinic.stress (drop=timemin timesec);

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 277

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength='Nor mal';

 else if totaltime<750 then TestLength='Short';

run;

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 drop timemin timesec;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength='Nor mal';

 else if totaltime<750 then TestLength='Short';

run;

Assigning Permanent Labels and Formats

At this point, you've read and manipulated your raw data to obtain the observations, variables,
and variable values that you want. Your final task in this chapter is to permanently assign labels
and formats to variables.

In Chapter 4, Creating List Reports , you practiced temporarily assigning labels and formats
within a PROC step. These temporary labels and formats are applicable only for the duration of
the step. To permanently assign labels and formats, you use LABEL and FORMAT statements
in DATA steps .

Note Remember that labels and formats do not affect how data is stored in the data

set, only how data appears in output.

Example

To specify the label Cumulative Total Seconds (+5,400) and the format COMMA6. for the
variable SumSec, you can submit the following program:

data clinic.stress;

 infile tests;

 278

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if resthr<70 then delete;

 if tolerance='D';

 drop timemin timesec;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength='Nor mal';

 else if totaltime<750 then TestLength='Short';

 label sumsec='Cumulative Total Seconds (+5,400)' ;

 format sumsec comma6.;

run;

You're finished! When you print the new data set, SumSec is labeled and formatted as specified.
(Don't forget to include the LABEL option in the PROC PRINT statement.)

proc print data=clinic.stress label;

run;

O
b
s

ID Name Res
tHR

Max
HR

Rec
HR

Toler
ance

Total
Time

Cumul
ative
Total
Secon
ds
(+5,40
0)

TestLe
ngth

1 24
58

Murray
, W

72 185 128 D 758 6,158 Normal

2 25
39

LaMan
ce, K

75 168 141 D 706 6,864 Short

3 25
72

Obero
n, M

74 177 138 D 731 7,595 Short

4 25
74

Peters
on, V

80 164 137 D 849 8,444 Long

5 25
84

Takah
ashi, Y

76 163 135 D 967 9,411 Long

Note Remember that many SAS procedures automatically use permanent

labels and formats in output, without requiring additional statements or
options.

Warning If you assign temporary labels or formats within a PROC step, they override

any permanent labels or formats that were assigned during the DATA step.

 279

Assigning Values Conditionally Using SELECT Groups

Earlier in this chapter, you learned to assign values conditionally by using IF-THEN/ELSE
statements. You can also use SELECT groups in DATA steps to perform conditional processing.
A SELECT group contains these statements:

Use This Statement To Perform This Action

SELECT begins a SELECT group.

WHEN identifies SAS statements that are executed when a particular
condition is true.

OTHERWISE
(optional)

specifies a statement to be executed if no WHEN condition is met.

END ends a SELECT group.

You can decide whether to use IF-THEN/ELSE statements or SELECT groups based on the
following criteria.

When you have a long series of mutually exclusive conditions and the comparison is numeric,
using a SELECT group is slightly more efficient than using a series of IF-THEN or IF-THEN/ELSE
statements because CPU time is reduced. SELECT groups also make the program easier to read
and debug.

For programs with few conditions , use IF-THEN/ELSE statements.

General form, SELECT group:

SELECT <(select-expression)>;
 WHEN-1 (when-expression-1 <..., when-expression-n>) statement;
 WHEN-n (when-expression-1 <..., when-expression-n>) statement;
 <OTHERWISE statement;>
END;

where
� SELECT begins a SELECT group.
� the optional select-expression specifies any SAS expression that evaluates to a single

value.
� WHEN identifies SAS statements that are executed when a particular condition is true.
� when-expression specifies any SAS expression, including a compound expression. You

must specify at least one when-expression.
� statement is any executable SAS statement. You must specify the statement argument.
� the optional OTHERWISE statement specifies a statement to be executed if no WHEN

condition is met.
� END ends a SELECT group.

Example

The following code is a simple example of a SELECT group. Notice that the variable a is
specified in the SELECT statement, and various values to compare to a are specified in the
WHEN statements. When the value of the variable a is

� 1, x is multiplied by 10

 280

� 3, 4, or 5, x is multiplied by 100
� 2 or any other value, nothing happens.

� select (a);

� when (1) x=x*10;

� when (3, 4, 5) x=x*100;

� otherwise;

end;

Example: SELECT Group in a DATA Step

Now let's look at a SELECT group in context. In the DATA step below, the SELECT group
assigns values to the variable Group based on values of the variable JobCode . Most of the
assignments are one-to-one correspondences, but ticket agents (the JobCode values TA1, TA2,
and TA3) are grouped together, as are values in the Other category.

data emps(keep=salary group);

 set sasuser.payrollmaster;

 length Group $ 20;

 select(jobcode);

 when ("FA1") group="Flight Attendant I";

 when ("FA2") group="Flight Attendant II";

 when ("FA3") group="Flight Attendant III";

 when ("ME1") group="Mechanic I";

 when ("ME2") group="Mechanic II";

 when ("ME3") group="Mechanic III";

 when ("NA1") group="Navigator I";

 when ("NA2") group="Navigator II";

 when ("NA3") group="Navigator III";

 when ("PT1") group="Pilot I";

 when ("PT2") group="Pilot II";

 when ("PT3") group="Pilot III";

 when ("TA1","TA2","TA3") group="Ticket Agents ";

 otherwise group="Other";

 end;

run;

Notice that in this case the SELECT statement does contain a select-expression. You are
checking values of a single variable, so using select(jobcode) and only the JobCode value
in each WHEN statement is more concise than eliminating the select-expression and repeating
the variable in each when-expression, as in when(jobcode="FA1") .

Note Notice that the LENGTH statement in the DATA step above specifies a length

of 20 for Group . Remember that without the LENGTH statement, values for
Group might be truncated, as the first value for Group (Flight Attendant I) is
not the longest possible value.

Warning When you are comparing values in the when-expression, be sure to

express the values exactly as they are coded in the data. For example, the

 281

when-expression below would be evaluated as false because the values for
JobCode in Sasuser.Payrollmaster are stored in uppercase letters.

when (" fa1 ") group="Flight Attendant I";

In this case, given the SELECT group above, Group would be assigned
the value Other.

Specifying SELECT Statements with Expressions

As you saw in the general form for SELECT groups, you can optionally specify a select-
expression in the SELECT statement. The way SAS evaluates a when-expression depends on
whether you specify a select-expression.

If you do specify a select-expression in the SELECT statement, SAS compares the value of the
select-expression with the value of each when-expression. That is, SAS evaluates the select-
expression and when-expression, compares the two for equality, and returns a value of true or
false.

� If the comparison is true , SAS executes the statement in the WHEN statement.
� If the comparison is false , SAS proceeds either to the next when-expression in the

current WHEN statement, or to the next WHEN statement if no more expressions are
present. If no WHEN statements remain, execution proceeds to the OTHERWISE
statement, if one is present.

Warning If the result of all SELECT-WHEN comparisons is false and no

OTHERWISE statement is present, SAS issues an error message and
stops executing the DATA step.

In the following SELECT group, SAS determines the value of toy and
compares it to values in each WHEN statement in turn. If a WHEN
statement is true compared to the toy value, then SAS assigns the related
price and continues processing the rest of the DATA step. If none of the
comparisons is true, then SAS executes the OTHERWISE statement and
writes a debugging message to the SAS log.

select (toy);

 when ("Bear") price=35.00;

 when ("Violin") price=139.00;

 when ("Top","Whistle","Duck") price=7.99;

 otherwise put "Check unknown toy: " toy=;

end;

Specifying SELECT Statements without Expressions

If you don't specify a select-expression, SAS evaluates each when-expression to produce a
result of true or false.

� If the result is true , SAS executes the statement in the WHEN statement.
� If the result is false , SAS proceeds either to the next when-expression in the current

WHEN statement, or to the next WHEN statement if no more expressions are present, or
to the OTHERWISE statement if one is present. (That is, SAS performs the action that is
indicated in the first true WHEN statement.)

If more than one WHEN statement has a true when-expression, only the first WHEN statement
is used; once a when-expression is true, no other when-expressions are evaluated.

Warning If the result of all when-expressions is false and no OTHERWISE statement

is present, SAS issues an error message .

 282

In the example below, the SELECT statement does not specify a select-
expression. The WHEN statements are evaluated in order, and only one is
used. For example, if the value of toy is Bear and the value of month is
FEB, only the second WHEN statement is used, even though the condition
in the third WHEN statement is also met. In this case, the variable price is
assigned the value 25.00.

select;

 when (toy="Bear" and month in ('OCT', 'NOV', 'DEC'))
price=45.00;

 when (toy="Bear" and month in ('JAN', 'FEB'))
price=25.00;

 when (toy="Bear") price=35.00;

 otherwise;

end;

Grouping Statements Using DO Groups

So far in this chapter, you've seen examples of conditional processing (IF-THEN/ELSE
statements and SELECT groups) that execute only a single SAS statement when a condition is
true. However, you can also execute a group of statements as a unit by using DO groups .

To construct a DO group, you use the DO and END statements along with other SAS statements.

General form, simple DO group:

DO;
 SAS statements
END;

where
� the DO statement begins DO-group processing
� SAS statements between the DO and END statements are called a DO group and

execute as a unit
� the END statement terminates DO-group processing.

Note You can nest DO statements within DO groups.

You can use DO groups in IF-THEN/ELSE statements and SELECT groups to perform many
statements as part of the conditional action.

Examples

In this simple DO group, the statements between DO and END are performed only when
TotalTime is greater than 800. If TotalTime is less than or equal to 800, statements in the DO
group do not execute, and the program continues with the assignment statement that follows the
appropriate ELSE statement.

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31 -33

 283

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6 Message $ 20;

 if totaltime>800 then

 do;

 testlength='Long';

 message='Run blood panel';

 end;

 else if 750<=totaltime<=800 then testlength='Nor mal';

 else if totaltime<750 then TestLength='Short';

run;

In the SELECT group below, the statements between DO and END are performed only when the
value of Payclass is hourly. Notice that an IF-THEN statement appears in the DO group; the
PUT statement executes only when Hours is greater than 40. The second END statement in the
program closes the SELECT group.

data payroll;

 set salaries;

 select(payclass);

 when ('monthly') amt=salary;

 when ('hourly')

 do;

 amt=hrlywage*min(hrs,40);

 if hrs>40 then put 'CHECK TIMECARD';

 end;

 otherwise put 'PROBLEM OBSERVATION';

 end;

run;

Indenting and Nesting DO Groups

You can nest DO groups to any level, just like you nest IF-THEN/ELSE statements. (The memory
capabilities of your system might limit the number of nested DO statements that you can use. For
details, see the SAS documentation about how many levels of nested DO statements your
system's memory can support.)

The following is an example of nested DO groups:

do;

 statements;

 do;

 statements;

 284

 do;

 statements;

 end;

 end;

end;

It is good practice to indent the statements in DO groups, as shown in the preceding statements,
so that their position indicates the levels of nesting.

Note There are three other forms of the DO statement:

� The iterative DO statement executes statements between DO and END
statements repetitively based on the value of an index variable. The
iterative DO statement can contain a WHILE or UNTIL clause.

� The DO UNTIL statement executes statements in a DO loop repetitively
until a condition is true, checking the condition after each iteration of the
DO loop.

� The DO WHILE statement executes statements in a DO loop repetitively
while a condition is true, checking the condition before each iteration of the
DO loop.

You can learn about these forms of the DO statement in Chapter 15,
Generating Data with DO Loops .

Summary

Text Summary

Accumulating Totals

Use a Sum statement to add the result of an expression to an accumulator variable.

Initializing Accumulator Variables

You can use the RETAIN statement to assign an initial value to a variable whose value is
assigned by a Sum statement.

Assigning Values Conditionally

To perform an action conditionally, use an IF-THEN statement . The IF-THEN statement
executes a SAS statement when the condition in the IF clause is true. You can include
comparison and logical operators; logical comparisons that are enclosed in parentheses are
evaluated as true or false before other expressions are evaluated. Use the ELSE statement to
specify an alternative action when the condition in an IF-THEN statement is false.

Specifying Lengths for Variables

When creating a new variable, SAS allocates as many bytes of storage space as there are
characters in the first value that it encounters for that variable. This can result in truncated values.
You can use the LENGTH statement to specify a length before the variable's first value is
referenced in the DATA step.

 285

Subsetting Data

To omit observations as you read raw data, include the DELETE statement in an IF-THEN
statement. If you need to read and process variables that you don't want to keep in the data set,
then use the DROP= and KEEP= data set options or the DROP and KEEP statements .

Assigning Permanent Labels and Formats

You can use LABEL and FORMAT statements in DATA steps to permanently assign labels and
formats. These do not affect how data is stored in the data set, only how it appears in output.

Assigning Values Conditionally Using SELECT Groups

As an alternative to IF-THEN/ELSE statements, you can use SELECT groups in DATA steps to
perform conditional processing. SELECT groups are more efficient than IF-THEN/ELSE
statements when you have a long series of mutually exclusive conditions.

Grouping Statements Using DO Groups

You can execute a group of statements as a unit by DO groups in DATA steps. You can use DO
groups in IF-THEN/ELSE statements and SELECT groups to perform many statements as part of
the conditional action.

Points to Remember
� Like the assignment statement, the Sum statement does not contain a keyword.
� If the expression in a Sum statement produces a missing value, the Sum statement

ignores it. (By contrast, assignment statements assign a missing value if the expression
produces a missing value.)

� Using ELSE statements with IF-THEN statements can save resources. For greater
efficiency, construct your IF-THEN/ELSE statements with conditions of decreasing
probability.

� When you create a new variable, make sure the LENGTH statement appears before any
other reference to the variable in the DATA step. If the variable has been created by another
statement, a later use of the LENGTH statement will not change its size.

� Labels and formats do not affect how data is stored in the data set, only how it appears in
output. You assign labels and formats temporarily in PROC steps and permanently in DATA
steps.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which program creates the output shown below?

 286

StockNum Finish Style Item TotalPrice

310 oak pedestal table 329.99

311 maple pedestal table 699.98

312 brass floor lamp 779.97

313 glass table lamp 839.96

a. data test2;

b. infile furnture;

c. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18

d. Item $ 20-24 Price 26-31;

e. if finish='oak' then delete;

f. retain TotPrice 100;

g. totalprice+price;

h. drop price;

i. run;

j. proc print data=test2 noobs;

k. run;

l. data test2;

m. infile furnture;

n. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18

o. Item $ 20-24 Price 26-31;

p. if finish='oak' and price<200 then delete;

q. TotalPrice+price;

r. run;

s. proc print data=test2 noobs;

t. run;

u. data test2(drop=price);

v. infile furnture;

w. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18

x. Item $ 20-24 Price 26-31;

y. if finish='oak' and price<200 then delete;

z. TotalPrice+price;

 287

aa. run;

bb. proc print data=test2 noobs;

cc. run;

dd. data test2;

ee. infile furnture;

ff. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18

gg. Item $ 20-24 Price 26-31;

hh. if finish=oak and price<200 then delete price;

ii. TotalPrice+price;

jj. run;

kk. proc print data=test2 noobs;

ll. run;

2. How is the variable Amount labeled and formatted in the PROC PRINT output?

data credit;

 infile creddata;

 input Account $ 1-5 Name $ 7-25 Type $ 27

 Transact $ 29-35 Amount 37-50;

 label amount='Amount of Loan';

 format amount dollar12.2;

run;

proc print data=credit label;

 label amount='Total Amount Loaned';

 format amount comma10.;

run;
a. label Amount of Loan, format DOLLAR12.2
b. label Total Amount Loaned, format COMMA10.
c. label Amount, default format
d. The PROC PRINT step does not execute because two labels and two

formats are assigned to the same variable.

3. Consider the IF-THEN statement shown below. When th e statement is executed,
which expression is evaluated first?

if finlexam>=95

 and (research='A' or

 (project='A' and present='A'))

 then Grade='A+';
a. finlexam>=95
b. research='A'
c. project='A' and present='A'
d. research='A' or

(project='A' and present='A')

 288

4. Consider the small raw data file and program shown below. What is the value of
Count after the fourth record is read?

a. missing
b. 0
c. 30
d. 70

5. Now consider the revised program below. What is the value of Count after the
third observation is read?

a. missing
b. 0
c. 100
d. 130

6. For the observation shown below, what is the result of the IF-THEN statement?

Status Type Count Action Control

ok 3 12 E Go

if status='OK' and type=3

 then Count+1;

if status='S' or action='E'

 then Control='Stop';
a. Count = 12 Control = Go
b. Count = 13 Control = Stop
c. Count = 12 Control = Stop
d. Count = 13 Control = Go

7. Which of the following can determine the length of a new variable?
a. the length of the variable's first value
b. the assignment statement
c. the LENGTH statement
d. all of the above

8. Which set of statements is the most efficient equiv alent to the code shown
below?

 289

if code='1' then Type='Fixed';

if code='2' then Type='Variable';

if code^='1' and code^='2' then Type='Unknown';

a. if code='1' then Type='Fixed';

b. else if code='2' then Type='Variable';

c. else Type='Unknown';

d. if code='1' then Type='Fixed';

e. if code='2' then Type='Variable';

f. else Type='Unknown';

g. if code='1' then type='Fixed';

h. else code='2' and type='Variable';

i. else type='Unknown';

j. if code='1' and type='Fixed';

k. then code='2' and type='Variable';

l. else type='Unknown';

9. What is the length of the variable Type , as created in the DATA step below?

data finance.newloan;

 set finance.records;

 TotLoan+payment;

 if code='1' then Type='Fixed';

 else Type='Variable';

 length type $ 10;

run;
a. 5
b. 8
c. 10
d. It depends on the first value of Type.

10. Which program contains an error?

a. data clinic.stress(drop=timemin timesec);

b. infile tests;

c. input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 3 1-33

d. RecHR 35-37 TimeMin 39-40 TimeSec 42-43

e. Tolerance $ 45;

f. TotalTime=(timemin*60)+timesec;

g. SumSec+totaltime;

h. run;

i. proc print data=clinic.stress;

j. label totaltime='Total Duration of Test';

k. format timemin 5.2;

l. drop sumsec;

 290

m. run;

n. proc print data=clinic.stress(keep=totaltime timemi n);

o. label totaltime='Total Duration of Test';

p. format timemin 5.2;
q.

r. run; data clinic.stress;

s. infile tests;

t. input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 3 1-33

u. RecHR 35-37 TimeMin 39-40 TimeSec 42-43

v. Tolerance $ 45;

w. TotalTime=(timemin*60)+timesec;

x. keep id totaltime tolerance;

y. run;

Answers

1. Correct answer: c

Program c correctly deletes the observation in which the value of Finish is oak and the value
of Price is less than 200. It also creates TotalPrice by summing the variable Price
down observations, then drops Price by using the DROP= data set option in the DATA
statement.

2. Correct answer: b

The PROC PRINT output displays the label Total Amount Loaned for the variable Amount
and formats this variable using the COMMA10. format. Temporary labels or formats that are
assigned in a PROC step override permanent labels or formats that are assigned in a DATA
step.

3. Correct answer: c

Logical comparisons that are enclosed in parentheses are evaluated as true or false before
they are compared to other expressions. In the example above, the AND comparison within
the nested parentheses is evaluated before being compared to the OR comparison.

4. Correct answer: d

The Sum statement adds the result of the expression that is on the right side of the plus sign
to the numeric variable that is on the left side. The new value is then retained for subsequent
observations. The Sum statement treats the missing value as a 0, so the value of Count in
the fourth observation would be 10+20+0+40, or 70

5. Correct answer: d

The RETAIN statement assigns an initial value of 100 to the variable Count , so the value of
Count in the third observation would be 100+10+20+0, or 130.

6. Correct answer: c

 291

You must enclose character values in quotation marks, and you must specify them in the
same case in which they appear in the data set. The value ok is not identical to OK, so the
value of Count is not changed by the IF-THEN statement.

7. Correct answer: d

The length of a variable is determined by its first reference in the DATA step. When creating
a new character variable, SAS allocates as many bytes of storage space as there are
characters in the first value that it encounters for that variable. The first reference to a new
variable can also be made with a LENGTH statement or an assignment statement. The
length of the variable's first value does not matter once the variable has been referenced in
your program.

8. Correct answer: a

Answer a is the most efficient. You can write multiple ELSE statements to specify a series of
mutually exclusive conditions. The ELSE statement must immediately follow the IF-THEN
statement in your program. An ELSE statement executes only if the previous IF-THEN/ELSE
statement is false.

9. Correct answer: a

The length of a new variable is determined by the first reference in the DATA step, not by
data values. In this case, the length of Type is determined by the value Fixed. The LENGTH
statement is in the wrong place; it must be read before any other reference to the variable in
the DATA step. The LENGTH statement cannot change the length of an existing variable.

10. Correct answer: b

To select variables, you can use a DROP or KEEP statement in any DATA step. You can
also use the DROP= or KEEP= data set options following a data set name in any DATA or
PROC step. However, you cannot use DROP or KEEP statements in PROC steps.

 292

Chapter 12: Reading SAS Data Sets

Overview

Introduction

You've learned about creating a SAS data set from raw data. However, you might want to create
a new data set from an existing SAS data set. To create the new data set, you can read a data
set using the DATA step. As you read the data set, you can use all the programming features of
the DATA step to manipulate your data.

This chapter shows you how to use the DATA step to read an existing SAS data set. When you
create your new data set, you can choose variables, select observations based on one or more
conditions, and assign values conditionally. You can also assign variable attributes such as
formats and labels.

Note You can also merge , concatenate , or interleave two or more data sets. For

details, see Chapter 13, Combining SAS Data Sets .

Objectives

In this chapter, you learn to
� create a new data set from an existing data set
� use BY groups to process observations
� read observations by observation number
� stop processing when necessary
� explicitly write observations to output
� detect the last observation in a data set
� identify differences in DATA step processing for raw data and DATA step processing for

existing data sets.

Reading a Single Data Set

Suppose you want to create a small data set, Lab23.Drug1H , from the Research.CLTrials data
set, which contains information about treadmill test time and relative tolerance levels.

 293

To create the data set, you must first reference the library in which CLTrials is stored and then
the library in which you want to store Drug1H . Then you write a DATA step to read your data and
create a new data set.

General form, basic DATA step for reading a single data set:

DATA SAS-data-set;
SET SAS-data-set;
RUN;

where
� SAS-data-set in the DATA statement is the name (libref.filename) of the SAS data set to

be created
� SAS-data-set in the SET statement is the name (libref.filename) of the SAS data set to be

read.

You write a DATA step to name the SAS data set to be created. Then, you specify the data set
that will be read in the SET statement. The DATA statement below creates the permanent SAS
data set Drug1H , which will be stored in a SAS data library to which the libref Lab23 has been
assigned. The SET statement below reads the permanent SAS data set Research.CLTrials .

ibname lab23 'c:\drug\allergy\labtests';

libname research 'c:\drug\allergy';

data lab23.drug1h;

 set research.cltrials;

run;

The DATA step above reads all observations and variables from the existing data set into the new
data set. When you submit this DATA step, the following messages appear in the log, confirming
that the new data set was created:
SAS Log

 8 data lab23.drug1h;

 9 set research.cltrials;

10 run;

NOTE: The data set LAB23.DRUG1H has 21

 observations and 8 variables.

Manipulating Data

In the previous section of this chapter, the example program created a data set that was identical
to the existing data set, Research.CLTrials . But you usually don't want an exact duplicate of the
existing data set. When you read a data set, you can use any of the programming features of the
DATA step to manipulate your data.

For example, you can use any of the statements and data set options that you learned in previous
chapters.

 294

To Do This Use This Type of Statement

Subset data if resthr<70 then delete;

if tolerance='D';

Drop unwanted variables drop timemin timesec;

Create or modify a variable TotalTime=(timemin*60)+timesec;

Initialize a sum variable
Sum accumulated values

retain SumSec 5400;

sumsec+totaltime;

Specify a variable's length length TestLength $ 6;

Execute statements conditionally if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800

 then TestLength='Normal';

else if totaltime<750

 then TestLength='Short';

Label a variable

Format a variable

label sumsec='Cumulative Total Seconds';

format sumsec comma6.;

Example

The following DATA step reads the data set Research.CLTrials , selects observations and
variables, and creates new variables.

data lab23.drug1h(drop=placebo uric);

 set research.cltrials(drop=triglyc);

 if sex='M' then delete;

 if placebo='YES';

 TestDate='22MAY1999'd;

 retain Days 30;

 days+1;

 length Retest $ 5;

 if cholesterol>190 then retest='YES';

 else if 150<=cholesterol<=190 then retest='CHECK ';

 else if cholesterol<150 then retest='NO';

 label retest='Perform Cholesterol Test 2?';

 format enddate mmddyy10.;

run;

Where to Specify the DROP= and KEEP= Data Set Optio ns

You've learned that you can specify the DROP= and KEEP= data set options anywhere you
name a SAS data set. However, using DROP= and KEEP= when reading an existing data set
requires that you decide where to specify these options. You can specify DROP= and KEEP= in

 295

either the DATA statement or the SET statement , depending on whether or not you want to
process values of the variables in that DATA step:

� If you don't process certain variables and you don't want them to appear in the new data
set, then specify them in the DROP= option in the SET statement.

In the DATA step shown below, the DROP= option in the SET statement prevents the
variables Triglycerides and UricAcid from being read. These variables won't appear
in the Lab23.Drug1H data set.

data lab23.drug1h(drop=placebo);

 set research.cltrials(drop=triglycerides uricaci d);

 if placebo='YES';

run;
� If you do need to process a variable in the original data set (in a subsetting IF statement,

for example), you must specify the variable in the DROP= option in the DATA statement.
Otherwise, the statement that is using the variable for processing causes an error.

This DATA step uses the variable Placebo to select observations. To drop Placebo from
the new data set, the DROP= option must appear in the DATA statement.

data lab23.drug1h(drop=placebo);

 set research.cltrials(drop=triglycerides uricaci d);

 if placebo='YES';

run;

When used in the DATA statement, the DROP= option simply drops the variables from the new
data set. However, the variables are still read from the original data set and are available within
the DATA step.

� Remember, in either situation, you can use the KEEP= option instead of the DROP=
option if more variables are dropped than kept.

Using BY-Group Processing

Finding the First and Last Observations in a Group

In Chapter 4, Creating List Reports , you learned to use a BY statement in PROC SORT to sort
observations and in PROC PRINT to group observations for subtotals. You can also use the BY
statement in the DATA step to group observations for processing.

data temp;

 set salary;

 by dept;

run;

When you use the BY statement with the SET statement,
� the data sets that are listed in the SET statement must be sorted by the values of the BY

variable(s), or the data sets must have an appropriate index.
� the DATA step creates two temporary variables for each BY variable. One is named

FIRST. variable , where variable is the name of the BY variable, and the other is
named LAST. variable . Their values are either 1 or 0. FIRST. variable and
LAST. variable identify the first and last observation in each BY group.

This Variable Equals

 296

This Variable Equals

FIRST. variable 1 for the first observation in a BY group

0 for any other observation in a BY group

LAST. variable 1 for the last observation in a BY group

0 for any other observation in a BY group

Example

To work with FIRST. variable and LAST. variable , let's look at a different set of data. The
Company.USA data set contains payroll information for individual employees. Suppose you want
to compute the annual payroll by department. Assume 2,000 work hours per year for hourly
employees.

Before computing the annual payroll, you need to group observations by values of the variable
Dept .

SAS Data Set Company.USA (Partial Listing)

Dept WageCat WageRate

ADM20 S 3392.50

ADM30 S 5093.75

CAM10 S 1813.30

CAM10 S 1572.50

CAM10 H 13.48

ADM30 S 2192.25

The following program computes the annual payroll by department. Notice that the variable name
Dept has been appended to FIRST. and LAST.

proc sort data=company.usa out=work.temp;

 by dept;

run;

data company.budget(keep=dept payroll);

 set work.temp;

 by dept;

 if wagecat='S' then Yearly=wagerate*12;

 else if wagecat='H' then Yearly=wagerate*2000;

 if first.dept then Payroll=0;

 payroll+yearly;

 if last.dept;

run;

If you could look behind the scenes at the program data vector (PDV) as the Company.Budget
data set is being created, you would see the following. Notice the values for FIRST.Dept and
LAST.Dept .

 297

Selected PDV Variables

N Dept Payroll FIRST.Dept LAST.Dept

1 ADM10 70929.0 1 0

1 ADM10 119479.2 0 0

1 ADM10 173245.2 0 0

1 ADM10 255516.0 0 0

1 ADM10 293472.0 0 1

1 ADM20 40710.0 1 0

1 ADM20 68010.0 0 0

1 ADM20 94980.0 0 0

1 ADM20 136020.0 0 0

1 ADM20 177330.0 0 1

1 ADM30 61125.0 1 1

When you print the new data set, you can now list and sum the annual payroll by department.

proc print data=company.budget noobs;

 sum payroll;

 format payroll dollar12.2;

run;

Dept Payroll

Dept Payroll

ADM10 $293,472.00

ADM20 $177,330.00

ADM30 $173,388.00

CAM10 $130,709.60

CAM20 $156,731.20

 $931,630.80

Finding the First and Last Observations in Subgroup s

When you specify multiple BY variables,
� FIRST. variable for each variable is set to 1 at the first occurrence of a new value for

the variable
� a change in the value of a primary BY variable forces LAST. variable to equal 1 for the

secondary BY variables.

 298

Example

Suppose you now want to compute the annual payroll by job type for each manager. In your
program, you specify two BY variables, Manager and JobType .

proc sort data=company.usa out=work.temp2;

 by manager jobtype;

data company.budget2(keep=manager jobtype payroll);

 set work.temp2;

 by manager jobtype;

 if wagecat='S' then Yearly=wagerate*12;

 else if wagecat='H' then Yearly=wagerate*2000;

 if first.jobtype then Payroll=0;

 payroll+yearly;

 if last.jobtype;

run;

If you could look at the PDV now, you would see the following. Notice that the values for
FIRST.JobType and LAST.JobType change according to values of FIRST.Manager and
LAST.Manager .

Selected PDV Variables

_N
_

Manag
er

JobTy
pe

Payroll FIRST.
Manag
er

LAST.
Manag
er

FIRST.
JobTy
pe

LAST.JobTy
pe

1 Coxe 3 40710.
0

1 0 1 1

2 Coxe 50 41040.
0

0 0 1 0

3 Coxe 50 82350.
0

0 0 0 1

4 Coxe 240 27300.
0

0 0 1 0

5 Coxe 240 54270.
0

0 1 0 1

6 Delgad
o

240 35520.
0

1 0 1 0

7 Delgad
o

240 63120.
0

0 0 0 1

8 Delgad
o

420 18870.
0

0 0 1 0

9 Delgad
o

420 45830.
0

0 0 0 1

10 Delgad 440 21759. 0 1 1 1

 299

Selected PDV Variables

_N
_

Manag
er

JobTy
pe

Payroll FIRST.
Manag
er

LAST.
Manag
er

FIRST.
JobTy
pe

LAST.JobTy
pe

o 6

11 Overby 1 82270.
8

1 0 1 1

12 Overby 5 48550.
2

0 0 1 1

13 Overby 10 53766.
0

0 0 1 1

14 Overby 20 70929.
0

0 0 1 0

15 Overby 20 108885
.0

0 1 0 1

Now you can sum the annual payroll by job type for each manager. In the following output, the
payroll for only two managers (Coxe and Delgado) is listed. Remember, neither the
FIRST. variable nor the LAST. variable is stored in the new data set.

proc print data=company.budget2 noobs;;

 by manager;

 var jobtype;

 sum payroll;

 where manager in ('Coxe','Delgado');

 format payroll dollar12.2;

run;

Manager=Coxe

JobType Payroll

3 $40,710.00

50 $123,390.00

240 $81,570.00

Manager $245,670.00

Manager=Delgado

JobType Payroll

240 $98,640.00

420 $64,700.00

440 $21,759.00

Manager $185,099.00

 300

Reading Observations Using Direct Access

The POINT= Option

So far in this chapter, you've read the observations in an input data set sequentially . That is, you
have accessed observations in the order in which they appear in the physical file. However, you
can also access observations directly , by going straight to an observation in a SAS data set
without having to process each observation that precedes it.

To access observations directly by their observation number, you use the POINT= option in the
SET statement.

General form, POINT= option:

POINT=variable;

where variable
� specifies a temporary numeric variable that contains the observation number of the

observation to be read
� must be given a value before the SET statement is executed.

Example

Let's suppose you want to read only the fifth observation from a data set. In the following DATA
step, the value 5 is assigned to the variable ObsNum. The POINT= option reads the value of
ObsNum to determine which observation to read from the data set Company.USA .

data work.getobs5;

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;

run;

Preventing Continuous Looping with the POINT= Optio n

As you learned in a previous chapter, the DATA step continues to read observations until it
reaches the end-of-file marker in the input data. However, because the POINT= option reads only
specified observations, SAS cannot read an end-of-file indicator as it would if the file were being
read sequentially. So submitting the following program would cause continuous looping :

data work.getobs5(drop=obsnum);

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;

run;

Because there is no end-of-file condition when you use direct access to read data, you must take
either or both of the following precautions:
� Use a STOP statement to prevent continuous looping. The STOP statement causes

SAS to stop processing the current DATA step immediately and to resume processing
statements after the end of the current DATA step.

 301

� Use programming logic that checks for an invalid value of the POINT= variable . If SAS
reads an invalid value for the POINT= variable, it sets the automatic variable _ERROR_ to 1.
You can use this information to check for conditions that cause continuous processing.

General form, STOP statement:

STOP;

So if you add a STOP statement, your program no longer loops continuously.

data work.getobs5(drop=obsnum);

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;

 stop;

run;

But your program doesn't write any observations to output, either. Remember from Chapter 6,
Understanding DATA Step Processing , that the DATA step writes observations to output at the
end of the DATA step. However, in this program, the STOP statement immediately stops
processing before the end of the DATA step.

The following section shows you how to write the observation to output before processing stops.

Writing Observations Explicitly

To override the default way in which the DATA step writes observations to output, you can use an
OUTPUT statement in the DATA step. Placing an explicit OUTPUT statement in a DATA step
overrides the automatic output, so that observations are added to a data set only when the
explicit OUTPUT statement is executed.

General form, OUTPUT statement:

OUTPUT <SAS-data-set(s)>;

where SAS-data-set(s) names the data set(s) to which the observation is written. All data set
names that are specified in the OUTPUT statement must also appear in the DATA statement.

Using an OUTPUT statement without a following data set name causes the current observation to
be written to all data sets that are named in the DATA statement.

With an OUTPUT statement, your program now writes a single observation to output—
observation 5.

data work.getobs5(drop=obsnum);

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsn um;

 output;

 stop;

 302

run;

proc print data=work.getobs5 noobs;

run;

Manager Payroll

Delgado 45830

Suppose your DATA statement contains two data set names, and you include an OUTPUT
statement that only references one of the data sets. The DATA step will create both data sets, but
only the data set that is named in the OUTPUT statement will contain output. For example, the
program below creates two temporary data sets, Empty and Full . The result of this DATA step is
that the data set Empty is created but contains no observations, and the data set Full contains all
of the observations from Company.Usa .

data empty full;

 set company.use;

 output full;

run;

More Complex Ways of Using Direct Access

To convey concepts clearly, the examples in this section have been as simple as possible.
However, most uses of the POINT= option are more complex. For example, POINT= is commonly
used in combining data sets, not simply in reading a single data set.

You can see more complex examples of using POINT= in Chapter 15, Generating Data with DO
Loops .

Detecting the End of a Data Set

The END= Option

Instead of reading specific observations, you might want to determine when the last observation
in an input data set has been read, so that you can perform specific processing. For example, you
might want to write to output only an observation that contains totals for variables in all
observations in the data set.

To create a temporary numeric variable whose value is used to detect the last observation, you
can use the END= option in the SET statement.

General form, END= option:

END=variable

where variable creates and names a temporary variable that contains an end-of-file marker. The
variable, which is initialized to 0, is set to 1 when the SET statement reads the last observation of
the data set.

This variable is not added to the data set.

Warning Do not specify END= with POINT=. POINT= reads only a specific

observation, so the last observation in the data set is not encountered.

 303

Examples

Suppose you want to sum the number of seconds for treadmill stress tests. If you submit the
following program, you produce a new data set that contains cumulative totals for each of the
values of TotalTime .

data work.addtoend(drop=timemin timesec);

 set clinic.stress2(keep=timemin timesec);

 TotalMin+timemin;

 TotalSec+timesec;

 TotalTime=totalmin*60+timesec;

run;

proc print data=work.addtoend noobs;

run;

TotalMin TotalSec TotalTime

12 38 758

22 43 1325

33 56 1993

42 98 2562

53 144 3226

65 170 3926

80 211 4841

93 224 5593

103 246 6202

119 295 7189

134 297 8042

146 308 8771

160 317 9609

171 343 10286

185 370 11127

198 389 11899

214 396 12847

231 431 13895

246 472 14801

260 529 15657

 304

TotalMin TotalSec TotalTime

272 539 16330

But what if you want only the final total (the last observation) in the new data set? The following
program uses the END= variable last to select only the last observation of the data set. You
specify END= in the SET statement and last wherever you need it in processing (here, in the
subsetting IF statement).

data work.addtoend(drop=timemin timesec);

 set clinic.stress2(keep=timemin timesec) end=last;

 TotalMin+timemin;

 TotalSec+timesec;

 TotalTime=totalmin*60+timesec;

 if last;

run;

proc print data=work.addtoend noobs;

run;

Now the new data set has one observation:

TotalMin TotalSec TotalTime

272 539 16330

Understanding How Data Sets Are Read

In a previous chapter, you learned about the compilation and execution phases of the DATA step
as they pertain to reading raw data. DATA step processing for reading existing SAS data sets is
very similar. The main difference is that while reading an existing data set with the SET
statement, SAS retains the values of the variables from one observation to the next.

Let's briefly look at the compilation and execution phases of DATA steps that use a SET
statement. In this example, the DATA step reads the data set Finance.Loans , creates the
variable Interest , and creates the new data set Finance.DueJan .

data finance.duejan;

 set finance.loans;

 Interest=amount*(rate/12);

run;

SAS Data Set Finance.Loans

Account Amount Rate Months Payment

101-1092 22000 0.100 60 467.43

101-1731 114000 0.095 360 958.57

101-1289 10000 0.105 36 325.02

101-3144 3500 0.105 12 308.52

 305

Compilation Phase

The compilation phase includes the following steps:
1. The program data vector is created and contains the automatic variables _N_ and

ERROR.

2. SAS also scans each statement in the DATA step, looking for syntax errors.
3. When the SET statement is compiled, a slot is added to the program data vector for each

variable in the input data set. The input data set supplies the variable names, as well as
attributes such as type and length.

4. Any variables that are created in the DATA step are also added to the program data
vector. The attributes of each of these variables are determined by the expression in the
statement.

5. At the bottom of the DATA step, the compilation phase is complete, and the descriptor
portion of the new SAS data set is created. There are no observations because the
DATA step has not yet executed.

When the compilation phase is complete, the execution phase begins.

Execution Phase

The execution phase includes the following steps:
1. The DATA step executes once for each observation in the input data set. For example,

this DATA step will execute four times because there are four observations in the input
data set Finance.Loans .

2. At the beginning of the execution phase, the value of _N_ is 1. Because there are no data
errors, the value of _ERROR_ is 0. The remaining variables are initialized to missing.
Missing numeric values are represented by a period, and missing character values are
represented by a blank.

 306

3. The SET statement reads the first observation from the input data set and writes the
values to the program data vector.

4. Then, the assignment statement executes to compute the value for Interest .

5. At the end of the first iteration of the DATA step, the values in the program data vector
are written to the new data set as the first observation.

6. The value of _N_ is set to 2, and control returns to the top of the DATA step. Remember,
the automatic variable _N_ keeps track of how many times the DATA step has begun to
execute.

 307

7. SAS retains the values of variables that were read from a SAS data set with the SET
statement, or that were created by a Sum statement. All other variable values, such as
the values of the variable Interest , are set to missing.

Note When SAS reads raw data , the situation is different. In that case, SAS

sets the value of each variable in the DATA step to missing at the
beginning of each iteration, with these exceptions:

� variables named in a RETAIN statement
� variables created in a Sum statement
� data elements in a _TEMPORARY_ array
� any variables created by using options in the FILE or INFILE statements
� automatic variables.

8. At the beginning of the second iteration, the value of _N_ is set to 2, and the value of
ERROR is re-set to 0. Remember, the automatic variable _N_ keeps track of how
many times the DATA step has begun to execute.

 308

9. As the SET statement executes, the values from the second observation are written to
the program data vector.

10. The assignment statement executes again to compute the value for Interest for the
second observation.

11. At the bottom of the DATA step, the values in the program data vector are written to the
data set as the second observation.

 309

12. The value of _N_ is set to 3, and control returns to the top of the DATA step. SAS
retains the values of variables that were read from a SAS data set with the SET
statement, or that were created by a Sum statement. All other variable values, such as
the values of the variable Interest , are set to missing.

This process continues until all of the observations are read.

Additional Features

The DATA step provides many other programming features for manipulating data sets. For
example, you can
� use IF-THEN/ELSE logic with DO groups and DO loops to control processing that is

based on one or more conditions
� specify additional data set options
� process variables in arrays
� use SAS functions.

You can also combine SAS data sets in several ways, including match merging, interleaving, one-
to-one merging, and updating. You will learn how to do these tasks in later chapters.

Summary

Text Summary

 310

Setting Up

Before you can create a new data set, you must assign a libref to the SAS data library that will
store the data set.

Reading a Single Data Set

After you have referenced the library in which your data set is stored, you can write a DATA step
to name the SAS data set to be created. You then specify the data set to be read in the SET
statement.

Selecting Variables

You can select the variables that you want to drop or keep by using the DROP= and KEEP= data
set options in parentheses after a SAS data set name. For convenience, use DROP= if more
variables are kept than dropped.

BY-Group Processing

Use the BY statement in the DATA step to group observations for processing. When you use the
BY statement with the SET statement, the DATA step automatically creates two temporary
variables, FIRST . and LAST. When you specify multiple BY variables, a change in the value of a
primary BY variable forces LAST. variable to equal 1 for the secondary BY variables.

Reading Observations Using Direct Access

In addition to reading input data sequentially, you can access observations directly by using the
POINT= option to go directly to a data set observation. There is no end-of-file condition when you
use direct access, so include an explicit OUTPUT statement and then the STOP statement to
prevent continuous looping.

Detecting the End of a Data Set

To determine when the last observation in an input data set has been read, use the END= option
in the SET statement. The specified variable is initialized to 0, then set to 1 when the SET
statement reads the last observation of the data set.

Points to Remember
� When you perform BY-group processing, the data sets that are listed in the SET

statement must either be sorted by the values of the BY variable(s), or they must have an
appropriate index.

� When using direct access to read data, you must prevent continuous looping. Add a
STOP statement to the DATA step, or use programming logic that checks for an invalid value
of the POINT= variable.

� Do not specify the END= option with the POINT= option in a SET statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. If you submit the following program, which variable s appear in the new data
set?

 311

data work.cardiac(drop=age group);

 set clinic.fitness(keep=age weight group);

 if group=2 and age>40;

run;
a. none
b. Weight
c. Age, Group
d. Age, Weight , Group

2. Which of the following programs correctly reads the data set Orders and
creates the data set FastOrdr?

a. data catalog.fastordr(drop=ordrtime);

b. set july.orders(keep=product units price);

c. if ordrtime<4;

d. Total=units*price;

e. run;

f. data catalog.orders(drop=ordrtime);

g. set july.fastordr(keep=product units price);

h. if ordrtime<4;

i. Total=units*price;

j. run;

k. data catalog.fastordr(drop=ordrtime);

l. set july.orders(keep=product units price

m. ordrtime);

n. if ordrtime<4;

o. Total=units*price;

p. run;
q. none of the above

3. Which of the following statements is false about BY -group processing?

When you use the BY statement with the SET statemen t,
a. the data sets that are listed in the SET stateme nt must be indexed or

sorted by the values of the BY variable(s).
b. the DATA step automatically creates two variable s, FIRST . and LAST.,

for each variable in the BY statement.
c. FIRST. and LAST. identify the first and last observation in each BY

group, in that order.
d. FIRST. and LAST. are stored in the data set.

4. There are 500 observations in the data set Company. USA. What is the result of
submitting the following program?

data work.getobs5(drop=obsnum);

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsn um;

 312

 stop;

run;
a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

5. There is no end-of-file condition when you use dire ct access to read data, so
how can your program prevent a continuous loop?

a. Do not use a POINT= variable.
b. Check for an invalid value of the POINT= variabl e.
c. Do not use an END= variable.
d. Include an OUTPUT statement.

6. Assuming that the data set Company.USA has five or more observations, what
is the result of submitting the following program?

data work.getobs5(drop=obsnum);

 obsnum=5;

 set company.usa(keep=manager payroll) point=obsn um;

 output;

 stop;

run;
a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

7. Which of the following statements is true regarding direct access of data sets?
a. You cannot specify END= with POINT=.
b. You cannot specify OUTPUT with POINT=.
c. You cannot specify STOP with END=.
d. You cannot specify FIRST. with LAST.

8. What is the result of submitting the following prog ram?

data work.addtoend;

 set clinic.stress2 end=last;

 if last;

run;
a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

9. At the start of DATA step processing, during the co mpilation phase, variables
are created in the program data vector (PDV), and o bservations are set to

a. blank
b. missing
c. 0
d. there are no observations.

 313

10. The DATA step executes
a. continuously if you use the POINT= option and th e STOP statement.
b. once for each variable in the output data set.
c. once for each observation in the input data set.
d. until it encounters an OUTPUT statement.

Answers

1. Correct answer: b

The variables Age, Weight , and Group are specified using the KEEP= option in the SET
statement. After processing, Age and Group are dropped in the DATA statement.

2. Correct answer: c

You specify the data set to be created in the DATA statement. The DROP= data set option
prevents variables from being written to the data set. Because you use the variable
OrdrTime when processing your data, you cannot drop OrdrTime in the SET statement. If
you use the KEEP= option in the SET statement, then you must list OrdrTime as one of the
variables to be kept.

3. Correct answer: d

When you use the BY statement with the SET statement, the DATA step creates the
temporary variables FIRST . and LAST. They are not stored in the data set.

4. Correct answer: b

The DATA step writes observations to output at the end of the DATA step. However, in this
program, the STOP statement stops processing before the end of the DATA step. An explicit
OUTPUT statement is needed in order to produce observations.

5. Correct answer: b

To avoid a continuous loop when using direct access, either include a STOP statement or
use programming logic that checks for an invalid value of the POINT= variable. If SAS reads
an invalid value of the POINT= variable, it sets the automatic variable _ERROR_ to 1. You can
use this information to check for conditions that cause continuous processing.

6. Correct answer: d

By combining the POINT= option with the OUTPUT and STOP statements, your program can
write a single observation to output.

7. Correct answer: a

The END= option and POINT= option are incompatible in the same SET statement. Use one
or the other in your program.

8. Correct answer: d

This program uses the END= option to name a temporary variable that contains an end-of-file
marker. That variable, LAST, is set to 1 when the SET statement reads the last observation of

 314

the data set.

9. Correct answer: d

At the bottom of the DATA step, the compilation phase is complete, and the descriptor portion
of the new SAS data set is created. There are no observations because the DATA step has
not yet executed.

10. Correct answer: c

The DATA step executes once for each observation in the input data set. You use the
POINT= option with the STOP statement to prevent continuous looping.

 315

Chapter 13: Combining SAS Data Sets

Overview

Introduction

In SAS programming, a common task is to combine observations from two or more data sets into
a new data set. By using the DATA step, you can combine data sets in several ways, including
the following:

Method of Combining Illustration

One-to-one reading

Creates observations that contain all
of the variables from each
contributing data set.

Combines observations based on
their relative position in each data
set.

Statement: SET

Concatenating

Appends the observations from one
data set to another.

Statement: SET

 316

Method of Combining Illustration

Interleaving

Intersperses observations from two or
more data sets, based on one or
more common variables.

Statements: SET, BY

Match-merging

Matches observations from two or
more data sets into a single
observation in a new data set
according to the values of a common
variable.

Statements: MERGE, BY

Note You can also use PROC SQL to

join data sets according to
common values. PROC SQL
enables you to perform many
other types of data set joins. See
the SQL Processing with SAS e-
learning course for additional
training.

This chapter shows you how to combine SAS data sets by using one-to-one reading,
concatenating, interleaving, and match-merging. When you use the DATA step to combine data
sets, you have a high degree of control in creating and manipulating data sets.

 317

Objectives

In this chapter, you learn to
� perform one-to-one reading of data sets
� concatenate data sets
� interleave data sets
� match-merge data sets
� predict the results by understanding match-merge processing
� re-name any like-named variables to avoid overwriting values
� select only matched observations, if desired.

One-to-One Reading

In Chapter 12, Reading SAS Data Sets , you learned how to use the SET statement to read an
existing SAS data set. You can also use multiple SET statements in a DATA step to combine
data sets. This is called one-to-one reading . In one-to-one reading, you can read different data
sets, or you can read the same data set more than once, as if you were reading from separate
data sets.

General form, basic DATA step for one-to-one readin g:

DATA output-SAS-data-set;
 SET SAS-data-set-1;
 SET SAS-data-set-2;
RUN;

where
� output-SAS-data-set names the data set to be created
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

Note You can specify any number of data sets in the SET statement.

How One-to-One Reading Selects Data

When you perform one-to-one reading,
� the new data set contains all the variables from all the input data sets. If the data sets

contain variables that have the same names, the values that are read in from the last data
set overwrite the values that were read in from earlier data sets.

� the number of observations in the new data set is the number of observations in the
smallest original data set . Observations are combined based on their relative position in
each data set; that is, the first observation in one data set is joined with the first observation
in the other, and so on. The DATA step stops after it has read the last observation from the
smallest data set.

How One-to-One Reading Works

Let's look at a simple case of one-to-one reading.

data one2one;

 set c;

 set d;

 318

run;

1. The first SET statement reads one observation from data set C.

Num VarA VarB

1 A1

2. Then the second SET statement reads one observation from data set D. The value for
Num in data set D overwrites the value for Num in data set C.

Num VarA VarB

2 A1 B1
3. Next, the first SET statement reads the second observation from data set C.

Num VarA VarB

2 A1 B1

3 A2

4. Finally, the second SET statement reads the second observation from data set D,
overwriting the value for Num in data set C. Because this is the last observation in the
smallest data set, processing stops. The DATA step does not read the third observation in
data set C.

Num VarA VarB

2 A1 B1

4 A2 B2

The following section shows how you might use one-to-one reading.

Example

Suppose you have basic patient data (ID, sex, and age) in the data set Clinic.Patients and want
to combine it with other patient data (height and weight) for patients under age 60. The height and
weight data is stored in the data set Clinic.Measure . Both data sets are sorted by the variable
ID .

 319

Notice that Clinic.Patients contains 7 observations in which the patient age is less than 60, and
Clinic.Measure contains 6 observations.

SAS Data Set Clinic.Patients

Obs ID Sex Age

1 1129 F 48

2 1387 F 57

3 2304 F 16

4 2486 F 63

5 4759 F 60

6 5438 F 42

7 6488 F 59

8 9012 F 39

9 9125 F 56

SAS Data Set Clinic.Measure

Obs ID Height Weight

1 1129 61 137

2 1387 64 142

3 2304 61 102

4 5438 62 168

5 6488 64 154

6 9012 63 157

To subset observations from the first data set and combine them with observations from the
second data set, you can submit the following program:

ata clinic.one2one;

 set clinic.patients;

 if age<60;

 set clinic.measure;

run;

The resulting data set, Clinic.One2one , contains 6 observations (the number of observations
read from the smallest data set, here Clinic.Measure). The last observation in Clinic.Patients is
not read.
SAS Data Set Clinic.One2one

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 57 64 142

3 2304 F 16 61 102

 320

SAS Data Set Clinic.One2one

Obs ID Sex Age Height Weight

4 5438 F 42 62 168

5 6488 F 59 64 154

6 9012 F 39 63 157

Concatenating

Another way to combine SAS data sets with the SET statement is concatenating , which
appends the observations from one data set to another data set. To concatenate SAS data sets,
you specify a list of data set names in the SET statement.

General form, basic DATA step for concatenating:

DATA output-SAS-data-set;
 SET SAS-data-set-1 SAS-data-set-2;
RUN;

where
� output-SAS-data-set names the data set to be created
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

Note You can specify any number of data sets in the SET statement.

How Concatenating Selects Data

When a program concatenates data sets, all of the observations are read from the first data set
that is listed in the SET statement. Then all of the observations are read from the second data set
that is listed, and so on, until all of the listed data sets have been read. The new data set contains
all of the variables and observations from all of the input data sets.

data concat;

 set a b;

run;

 321

Notice that A and C contain a common variable named Num:
� Both instances of Num (or any common variable) must have the same type attribute, or

SAS stops processing the DATA step and issues an error message stating that the variables
are incompatible.

� However, if the length attribute is different, SAS takes the length from the first data set
that contains the variable. In this case, the length of Num in A determines the length of Num in
Concat .

� The same is true for the label , format , and informat attributes: If any of these attributes
are different, SAS takes the attribute from the first data set that contains the variable with
that attribute.

Example

The following DATA step creates Clinic.Concat by concatenating Clinic.Therapy1999 and
Clinic.Therapy2000 .

data clinic.concat;

 set clinic.therapy1999 clinic.therapy2000;

run;

The listing of Clinic.Concat follows. The first 12 observations were read from
Clinic.Therapy1999 , and the last 12 observations were read from Clinic.Therapy2000 .

SAS Data Set Clinic.Concat

Obs Month Year AerClass WalkJogRun Swim

1 01 1999 26 78 14

2 02 1999 32 109 19

3 03 1999 15 106 22

4 04 1999 47 115 24

5 05 1999 95 121 31

 322

SAS Data Set Clinic.Concat

Obs Month Year AerClass WalkJogRun Swim

6 06 1999 61 114 67

7 07 1999 67 102 72

8 08 1999 24 76 77

9 09 1999 78 77 54

10 10 1999 81 62 47

11 11 1999 84 31 52

12 12 1999 92 44 55

13 01 2000 37 91 83

14 02 2000 41 102 27

15 03 2000 52 98 19

16 04 2000 61 118 22

17 05 2000 49 88 29

18 06 2000 24 101 54

19 07 2000 45 91 69

20 08 2000 63 65 53

21 09 2000 60 49 68

22 10 2000 78 70 41

23 11 2000 82 44 58

24 12 2000 93 57 47

Interleaving

If you use a BY statement when you concatenate data sets, the result is interleaving .
Interleaving intersperses observations from two or more data sets, based on one or more
common variables.

To interleave SAS data sets, specify a list of data set names in the SET statement, and specify
one or more BY variables in the BY statement.

General form, basic DATA step for interleaving:

DATA output-SAS-data-set;
 SET SAS-data-set-1 SAS-data-set-2;
 BY variable(s);
RUN;

where
� output-SAS-data-set names the data set to be created

 323

� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read
� variable(s) specifies one or more variables that are used to interleave observations.

Note You can specify any number of data sets in the SET statement. Each input data

set must be sorted or indexed in ascending order based on the BY variable(s).

How Interleaving Selects Data

When SAS interleaves data sets, observations in each BY group in each data set in the SET
statement are read sequentially, in the order in which the data sets and BY variables are listed,
until all observations have been processed. The new data set includes all the variables from all
the input data sets, and it contains the total number of observations from all input data sets.

data interlv;

 set c d;

 by num;

run;

Example

The following DATA step creates Clinic.Interlv by interleaving Clinic.Therapy1999 and
Clinic.Therapy2000 :

data clinic.interlv;

 set clinic.therapy1999 clinic.therapy2000;

 by month;

run;

Below is the listing of Clinic.Interlv . Notice that, unlike the previous example, observations are
interleaved by month instead of being concatenated.

SAS Data Set Clinic.Interlv

 324

Obs Month Year AerClass WalkJogRun Swim

1 01 1999 26 78 14

2 01 2000 37 91 83

3 02 1999 32 109 19

4 02 2000 41 102 27

5 03 1999 15 106 22

6 03 2000 52 98 19

7 04 1999 47 115 24

8 04 2000 61 118 22

9 05 1999 95 121 31

10 05 2000 49 88 29

11 06 1999 61 114 67

12 06 2000 24 101 54

13 07 1999 67 102 72

14 07 2000 45 91 69

15 08 1999 24 76 77

16 08 2000 63 65 53

17 09 1999 78 77 54

18 09 2000 60 49 68

19 10 1999 81 62 47

20 10 2000 78 70 41

21 11 1999 84 31 52

22 11 2000 82 44 58

23 12 1999 92 44 55

24 12 2000 93 57 47

Simple Match-Merging

So far in this chapter, you've learned how to combine data sets based on the order of the
observations in the input data sets. But sometimes you need to combine observations from two or
more data sets into a single observation in a new data set according to the values of a common
variable. This is called match-merging .

When you match-merge, you use a MERGE statement rather than a SET statement to combine
data sets.

General form, basic DATA step for match-merging:

 325

DATA output-SAS-data-set;
 MERGE SAS-data-set-1 SAS-data-set-2;
 BY <DESCENDING> variable(s);
RUN;

where
� output-SAS-data-set names the data set to be created.
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.
� variable(s) in the BY statement specifies one or more variables whose values are used to

match observations.
� DESCENDING indicates that the input data sets are sorted in descending order (largest

to smallest numerically, or reverse alphabetical for character variables) by the variable that is
specified. If you have more than one variable in the BY statement, DESCENDING applies
only to the variable that immediately follows it.

Note Each input data set in the MERGE statement must be sorted in order of the

values of the BY variable(s), or it must have an appropriate index. Each BY
variable must have the same type in all data sets to be merged.

Note You cannot use the DESCENDING option with indexed data sets because

indexes are always stored in ascending order.

How Match-Merging Selects Data

Generally speaking, during match-merging SAS sequentially checks each observation of each
data set to see whether the BY values match, then writes the combined observation to the new
data set.

data merged;

 merge a b;

 by num;

run;

Basic DATA step match-merging produces an output data set that contains values from all
observations in all input data sets . (You can add statements and options to select only
observations that match for two or more specific input data sets.)

 326

If an input data set doesn't have any observations for a particular value of the same-named
variable, then the observation in the output data set contains missing values for the variables
that are unique to that input data set.

Note In match-merging, often one data set contains unique values for the same-

named variable and other data sets contain multiple values for the same-
named variable.

Example: Merging Data Sets That Are Sorted in Ascen ding Order

Suppose you have sorted the data sets Clinic.Demog and Clinic.Visit as follows:

proc sort data=clinic.demog;

 by id;

run;

proc print data=clinic.demog;

run;

Obs ID Age Sex Date

1 A001 21 m 05/22/75

2 A002 32 m 06/15/63

3 A003 24 f 08/17/72

4 A004 . 03/27/69

5 A005 44 f 02/24/52

6 A007 39 m 11/11/57

proc sort data=clinic.visit;

 by id;

run;

proc print data=clinic.visit;

run;

Obs ID Visit SysBP DiasBP Weight Date

1 A001 1 140 85 195 11/05/98

2 A001 2 138 90 198 10/13/98

3 A001 3 145 95 200 07/04/98

4 A002 1 121 75 168 04/14/98

5 A003 1 118 68 125 08/12/98

 327

Obs ID Visit SysBP DiasBP Weight Date

6 A003 2 112 65 123 08/21/98

7 A004 1 143 86 204 03/30/98

8 A005 1 132 76 174 02/27/98

9 A005 2 132 78 175 07/11/98

10 A005 3 134 78 176 04/16/98

11 A008 1 126 80 182 05/22/98

You can then submit this DATA step to create Clinic.Merged by merging Clinic.Demog and
Clinic.Visit according to values of the variable ID :

data clinic.merged;

 merge clinic.demog clinic.visit;

 by id;

run;

proc print data=clinic.merged;

run;

Notice that all observations, including unmatched observations and observations that have
missing data, are written to the output data set.

Obs ID Age Sex Date
Visit

 SysBP DiasBP Weight

1 A001 21 m 11/05/98 1 140 85 195

2 A001 21 m 10/13/98 2 138 90 198

3 A001 21 m 07/04/98 3 145 95 200

4 A002 32 m 04/14/98 1 121 75 168

5 A003 24 f 08/12/98 1 118 68 125

6 A003 24 f 08/21/98 2 112 65 123

7 A004 . 03/30/98 1 143 86 204

8 A005 44 f 02/27/98 1 132 76 174

9 A005 44 f 07/11/98 2 132 78 175

10 A005 44 f 04/16/98 3 134 78 176

11 A007 39 m 11/11/57 . . .

12 A008 . 05/22/98 1 126 80 182

Example: Sorting and Merging Data Sets in Descendin g Order

The example above illustrates merging two data sets that are sorted in ascending order of the BY
variable ID . To sort the data sets in descending order and then merge them, you can submit the
following program:

 328

proc sort data=clinic.demog;

 by descending id;

run;

proc sort data=clinic.visit;

 by descending id;

run;

data clinic.merged;

 merge clinic.demog clinic.visit;

 by descending id;

run;

proc print data=clinic.merged;

run;

Notice that you specify the DESCENDING option in the BY statements in both the PROC SORT
steps and the DATA step. If you omit the DESCENDING option in the DATA step, you generate
error messages about improperly sorted BY variables.

Now the data sets are merged in descending order of the BY variable ID .

Obs ID Age Sex Date Visit SysBP DiasBP Weight

1 A008 . 05/22/98 1 126 80 182

2 A007 39 m 11/11/57 . . .

3 A005 44 f 02/27/98 1 132 76 174

4 A005 44 f 07/11/98 2 132 78 175

5 A005 44 f 04/16/98 3 134 78 176

6 A004 . 03/30/98 1 143 86 204

7 A003 24 f 08/12/98 1 118 68 125

8 A003 24 f 08/21/98 2 112 65 123

9 A002 32 m 04/14/98 1 121 75 168

10 A001 21 m 11/05/98 1 140 85 195

11 A001 21 m 10/13/98 2 138 90 198

12 A001 21 m 07/04/98 3 145 95 200

Match-Merge Processing

Introduction

The match-merging examples in this chapter are straightforward. However, match-merging can
be more complex, depending on your data and on the output data set that you want to create. To
predict the results of match-merges correctly, you need to understand how the DATA step
performs match- merges.

 329

When you submit a DATA step, it is processed in two phases:
� the compilation phase , in which SAS checks the syntax of the SAS statements and

compiles them (translates them into machine code). During this phase, SAS also sets up
descriptor information for the output data set and creates the program data vector (PDV),
an area of memory where SAS builds your data set, one observation at a time.

� the execution phase , in which the DATA step reads data and executes any subsequent
programming statements. When the DATA step executes, data values are read into the
appropriate variables in the program data vector. From here, the variables are written to the
output data set as a single observation.

The following sections cover match-merge processing in greater detail. In those sections, you
learn
� how the DATA step sets up the new output data set
� what happens when variables in different data sets have the same name
� how the DATA step matches observations in input data sets
� what happens when observations don't match
� how missing values are handled.

The Compilation Phase: Setting Up the New Data Set

To prepare to merge data sets, SAS
1. reads the descriptor portions of the data sets that are listed in the MERGE statement
2. reads the rest of the DATA step program
3. creates the program data vector (PDV) for the merged data set
4. assigns a tracking pointer to each data set that is listed in the MERGE statement.

If variables that have the same name appear in more than one data set, then the variable from
the first data set that contains the variable (in the order listed in the MERGE statement)
determines the length of the variable. (Recall that the value of the variable is the value in the last
data set that contains it.)

 330

The illustration above shows match-merging during the compilation phase. After reading the
descriptor portions of the data sets Clients and Amounts , SAS

1. creates a program data vector for the new Claims data set. The program data vector
contains all variables from the two data sets. Note that although Name appears in both
input data sets, it appears in the program data vector only once.

2. assigns tracking pointers to Clients and Amounts .

The Execution Phase: Match-Merging Observations

After compiling the DATA step, SAS sequentially match-merges observations by moving the
pointers down each observation of each data set and checking to see whether the BY values
match .
� If Yes, the observations are written to the PDV in the order in which the data sets appear

in the MERGE statement. Values of any same-named variable are overwritten by values of
the same-named variable in subsequent data sets. SAS writes the combined observation to
the new data set and retains the values in the PDV until the BY value changes in all the data
sets.

� If No, SAS determines which of the values comes first and writes the observation that
contains this value to the PDV. Then the contents of the PDV are written to the new data set.

 331

When the BY value changes in all the input data sets, the PDV is initialized to missing.

The DATA step continues to process every observation in each data set until it has processed all
observations in all data sets.

Handling Unmatched Observations and Missing Values

By default, all observations that are written to the PDV, including observations that have missing
data and no matching BY values, are written to the output data set. (If you specify a subsetting IF
statement to select observations, then only those that meet the IF condition are written.)
� If an observation contains missing values for a variable , then the observation in the

output data set contains the missing values as well. Observations that have missing values
for the BY variable appear at the top of the output data set.

 332

� If an input data set doesn't have a matching BY value , then the observation in the
output data set contains missing values for the variables that are unique to that input data
set.

Summary of Match-Merge Processing

Now that you've learned the basics of match-merge processing, you can review the compilation
and execution phases step by step.

1. First, SAS sets up the new data set by reading the descriptor portions of the data sets
and creating the program data vector.

2. Next, SAS sequentially match-merges observations and writes the new observation to
the PDV, then to the new data set.

3. When the BY value changes in all the input data sets, the PDV is initialized to missing.
4. Missing values for variables, as well as missing values resulting form unmatched

observations, are written to the new data set.

Renaming Variables

Sometimes you might have same-named variables in more than one input data set. In this case,
DATA step match-merging overwrites values of the like-named variable in the first data set in
which it appears with values of the like-named variable in subsequent data sets.

 333

For example, Clinic.Demog contains the variable Date (date of birth), and Clinic.Visit also
contains Date (date of the clinic visit in 1998). The DATA step below overwrites the date of birth
with the date of the clinic visit.

data clinic.merged;

 merge clinic.demog clinic.visit;

 by id;

run;

proc print data=clinic.merged;

run;

The following output shows the effects of overwriting the values of a variable in the
Clinic.Merged data set. In most observations, the date is now the date of the clinic visit. In
observation 11, the date is still the birth date because Clinic.Visit did not contain a matching ID
value and did not contribute to the observation.

Obs ID Age Sex Date Visit SysBP DiasBP Weight

1 A001 21 m 11/05/98 1 140 85 195

2 A001 21 m 10/13/98 2 138 90 198

3 A001 21 m 07/04/98 3 145 95 200

4 A002 32 m 04/14/98 1 121 75 168

5 A003 24 f 08/12/98 1 118 68 125

6 A003 24 f 08/21/98 2 112 65 123

7 A004 . 03/30/98 1 143 86 204

8 A005 44 f 02/27/98 1 132 76 174

9 A005 44 f 07/11/98 2 132 78 175

10 A005 44 f 04/16/98 3 134 78 176

11 A007 39 m 11/11/57 . . .

12 A008 . 05/22/98 1 126 80 182

You now have a data set with values for Date that mean two different things: date of birth and
date of clinic visit.

To prevent overwriting, you can rename variables by using the RENAME= data set option in the
MERGE statement.

General form, RENAME= data set option:

(RENAME=(old-variable-name=new-variable-name))

where
� the RENAME= option, in parentheses, follows the name of each data set that contains

one or more variables to be renamed
� old-variable-name specifies the variable to be renamed
� new-variable-name specifies the new name for the variable.

 334

Note You can rename any number of variables in each occurrence of the RENAME=

option.

You can also use RENAME= to rename variables in the SET statement or in
the output data set that is specified in the DATA statement.

In the following example, the RENAME= option renames the variable Date in Clinic.Demog to
BirthDate , and it renames the variable Date in Clinic.Visit to VisitDate .

data clinic.merged;

 merge clinic.demog (rename=(date=BirthDate))

 clinic.visit (rename=(date=VisitDate));

 by id;

run;

proc print data=clinic.merged;

run;

The following output shows the effect of the RENAME= option.

Ob
s

ID Ag
e

Se
x

BirthDa
te

Vis
it

SysB
P

DiasB
P

Weig
ht

VisitDa
te

1 A00
1

21 m 05/22/75 1 140 85 195 11/05/9
8

2 A00
1

21 m 05/22/75 2 138 90 198 10/13/9
8

3 A00
1

21 m 05/22/75 3 145 95 200 07/04/9
8

4 A00
2

32 m 06/15/63 1 121 75 168 04/14/9
8

5 A00
3

24 f 08/17/72 1 118 68 125 08/12/9
8

6 A00
3

24 f 08/17/72 2 112 65 123 08/21/9
8

7 A00
4

. 03/27/69 1 143 86 204 03/30/9
8

8 A00
5

44 f 02/24/52 1 132 76 174 02/27/9
8

9 A00
5

44 f 02/24/52 2 132 78 175 07/11/9
8

10 A00
5

44 f 02/24/52 3 134 78 176 04/16/9
8

11 A00
7

39 m 11/11/57

12 A00 . . 1 126 80 182 05/22/9

 335

Ob
s

ID Ag
e

Se
x

BirthDa
te

Vis
it

SysB
P

DiasB
P

Weig
ht

VisitDa
te

8 8

Excluding Unmatched Observations

By default, DATA step match-merging combines all observations in all input data sets. However,
you might want to select only observations that match for two or more specific input data sets.

To exclude unmatched observations from your output data set, you can use the IN= data set
option and the subsetting IF statement in your DATA step. In this case, you use

� the IN= data set option to create and name a variable that indicates whether the data set
contributed data to the current observation

� the subsetting IF statement to check the IN= values and to write to the merged data set
only those observations that appear in the data sets for which IN= is specified.

Creating Temporary IN= Variables

Suppose you want to match-merge the data sets Clinic.Demog and Clinic.Visit and select only
observations that appear in both data sets.

First, you use IN= to create two temporary variables, indemog and invisit . The IN= variable is
a temporary variable that is available to program statements during the DATA step, but it is not
included in the SAS data set that is being created.

General form, IN= data set option:

(IN=variable)

where
� the IN= option, in parentheses, follows the data set name
� variable names the variable to be created.

Within the DATA step, the value of the variable is 1 if the data set contributed data to the current
observation. Otherwise, its value is 0.

The DATA step that contains the IN= options appears below. The first IN= creates the temporary
variable indemog , which is set to 1 when an observation from Clinic.Demog contributes to the
current observation; otherwise, it is set to 0. Likewise, the value of invisit depends on whether
Clinic.Visit contributes to an observation or not.

data clinic.merged;

 merge clinic.demog (in=indemog)

 clinic.visit (in=invisit

 rename=(date=BirthDate));

 336

 by id;

run;

Note When you specify multiple data set options for a given data set, enclose them

in a single set of parentheses.

Selecting Matching Observations

Next, to select only observations that appear in both Clinic.Demog and Clinic.Visit , you specify
a subsetting IF statement in the DATA step.

In the DATA step below, the subsetting IF statement checks the values of indemog and
invisit and continues processing only those observations that meet the condition of the
expression. Here the condition is that both Clinic.Demog and Clinic.Visit contribute to the
observation. If the condition is met, the new observation is written to Clinic.Merged . Otherwise,
the observation is deleted.

data clinic.merged;

 merge clinic.demog (in=indemog

 rename=(date=BirthDate))

 clinic.visit (in=invisit

 rename=(date=VisitDate));

 by id;

 if indemog=1 and invisit=1;

run;

proc print data=clinic.merged;

run;

In previous examples, Clinic.Merged contained 12 observations. In the output below, notice that
only 10 observations met the condition in the IF expression.

Ob
s

ID Ag
e

Se
x

BirthD
ate

Vis
it

Sys
BP

Dias
BP

Weig
ht

VisitDa
te

1 A001 21 m 05/22/7
5

1 140 85 195 11/05/9
8

2 A001 21 m 05/22/7
5

2 138 90 198 10/13/9
8

3 A001 21 m 05/22/7
5

3 145 95 200 07/04/9
8

4 A002 32 m 06/15/6
3

1 121 75 168 04/14/9
8

5 A003 24 f 08/17/7
2

1 118 68 125 08/12/9
8

6 A003 24 f 08/17/7
2

2 112 65 123 08/21/9
8

7 A004 . 03/27/6
9

1 143 86 204 03/30/9
8

 337

Ob
s

ID Ag
e

Se
x

BirthD
ate

Vis
it

Sys
BP

Dias
BP

Weig
ht

VisitDa
te

8 A005 44 f 02/24/5
2

1 132 76 174 02/27/9
8

9 A005 44 f 02/24/5
2

2 132 78 175 07/11/9
8

10 A005 44 f 02/24/5
2

3 134 78 176 04/16/9
8

Not
e

SAS evaluates the expression within an IF statement to produce a result
that is either nonzero, zero, or missing. A nonzero or nonmissing result
causes the expression to be true; a zero or missing result causes the
expression to be false.

Thus, you can specify the subsetting IF statement from the previous
example in either of the following ways. The first IF statement checks
specifically for a value of 1. The second IF statement checks for a value
that is neither missing nor 0 (which for IN= variables is always 1).

if indemog=1 and invisit=1;

if indemog and invisit;

Selecting Variables

As with reading raw data or reading SAS data sets, you can specify the variables that you want to
drop or keep by using the DROP= and KEEP= data set options .

For example, the DATA step below reads all variables from Clinic.Demog and all variables
except Weight from Clinic.Visit . It then excludes the variable ID from Clinic.Merged after the
merge processing is complete.

data clinic.merged (drop=id);

 merge clinic.demog(in=indemog

 rename=(date=BirthDate))

 clinic.visit (drop=weight in=invisit

 rename=(date=VisitDate)) ;

 by id;

 if indemog and invisit;

run;

proc print data=clinic.merged;

run;

Obs Age Sex BirthDate Visit SysBP DiasBP VisitDate

1 21 m 05/22/75 1 140 85 11/05/98

2 21 m 05/22/75 2 138 90 10/13/98

3 21 m 05/22/75 3 145 95 07/04/98

4 32 m 06/15/63 1 121 75 04/14/98

 338

Obs Age Sex BirthDate Visit SysBP DiasBP VisitDate

5 24 f 08/17/72 1 118 68 08/12/98

6 24 f 08/17/72 2 112 65 08/21/98

7 . 03/27/69 1 143 86 03/30/98

8 44 f 02/24/52 1 132 76 02/27/98

9 44 f 02/24/52 2 132 78 07/11/98

10 44 f 02/24/52 3 134 78 04/16/98

Where to Specify the DROP= and KEEP= Options

As you've seen in previous chapters, you can specify the DROP= and KEEP= options wherever
you specify a SAS data set. When match-merging, you can specify these options in either the
DATA statement or the MERGE statement , depending on whether or not you want to process
values of the variables in that DATA step:

� If you don't process certain variables and you don't want them to appear in the new data
set, then specify them in the DROP= option in the MERGE statement .

� merge clinic.demog(in=indemog

� rename=(date=BirthDate))

� clinic.visit (drop=weight in=invisit

� rename=(date=VisitDate));
� If you do need to process a variable in the original data set (in a subsetting IF statement,

for example), then you must specify the variable in the DROP= option in the DATA
statement . Otherwise, the statement that uses the variable for processing causes an
error.

� data clinic.merged (drop=id);

When used in the DATA statement, the DROP= option simply drops the variables from the new
data set. However, they are still read from the original data set and are available for processing
within the DATA step.

Additional Features

The DATA step provides a large number of other programming features for manipulating data
when you combine data sets. For example, you can

� use IF-THEN/ELSE logic to control processing based on one or more conditions
� specify additional data set options
� perform calculations
� create new variables
� process variables in arrays
� use SAS functions
� use special variables such as FIRST. and LAST. to control processing.

You can also combine SAS data sets in other ways:
� You can perform one-to-one merging , which creates a data set that contains all of the

variables and observations from each contributing data set. Observations are combined
based on their relative position in each data set.

One-to-one merging is the same as one-to-one reading, with two exceptions:
o You use the MERGE statement instead of multiple SET statements.

 339

o The DATA step reads all observations from all data sets.

data work.onemerge;

 merge clinic.demog clinic.visit;

run;
� You can perform a conditional merge, using DO loops or other conditional statements:

� data work.combine;

� set sales.pounds;

� do while(not(begin le date le last));

� set sales.rate;

� end;

� Dollars=(sales*1000)*rate;

� run;

Note You can learn about DO loops in Chapter 15, Generating Data with DO

Loops .
� You can read the same data set in more than one SET statement:

� data work.combine(drop=totpay);

� if _n_=1 then do until(last);

� set sales.budget(keep=payroll) end=last;

� end;

� set sales.budget;

� Percent=payroll/totpay;

run;

Summary

Text Summary

One-to-One Reading

You can combine data sets with one-to-one reading by including multiple SET statements in a
DATA step. When you perform one-to-one reading, the new data set contains all the variables
from all the input data sets. If the data sets contain same-named variables, the values that are
read in from the last data set replace those that were read in from earlier ones. The number of
observations in the new data set is the number of observations in the smallest original data set.

Concatenating

To append the observations from one data set to another data set, you concatenate them by
specifying the data set names in the SET statement. When SAS concatenates, data sets in the
SET statement are read sequentially, in the order in which they are listed. The new data set
contains all the variables and the total number of observations from all input data sets.

 340

Interleaving

If you use a BY statement when you concatenate data sets, the result is interleaving .
Interleaving intersperses observations from two or more data sets, based on one or more
common variables. Each input data set must be sorted or indexed in ascending order based on
the BY variable(s). Observations in each BY group in each data set in the SET statement are
read sequentially, in the order in which the data sets and BY variables are listed, until all
observations have been processed. The new data set contains all the variables and the total
number of observations from all input data sets.

Simple Match-Merging

Sometimes you need to combine observations from two or more data sets into a single
observation in a new data set according to the values of a same-named variable. This is match-
merging , which uses a MERGE statement rather than a SET statement to combine data sets.
Each input data set must be sorted or indexed in ascending order based on the BY variable(s).
During match-merging, SAS sequentially checks each observation of each data set to see
whether the BY values match, then writes the combined observation to the new data set.

Match-Merge Processing

To predict the results of match-merging correctly, you need to understand how the DATA step
processes data in match-merges.

Compiling

To prepare to merge data sets, SAS
1. reads the descriptor portions of the data sets that are listed in the MERGE statement
2. reads the rest of the DATA step program
3. creates the program data vector (PDV), an area of memory where SAS builds your data

set one observation at a time
4. assigns a tracking pointer to each data set that is listed in the MERGE statement.

If variables with the same name appear in more than one data set, then the variable from the first
data set that contains the variable (in the order listed in the MERGE statement) determines the
length of the variable.

Executing

After compiling the DATA step, SAS sequentially match-merges observations by moving the
pointers down each observation of each data set and checking to see whether the BY values
match .
� If Yes, the observations are written to the PDV in the order in which the data sets appear

in the MERGE statement. Values of any same-named variable are overwritten by values of
the same-named variable in subsequent data sets. SAS writes the combined observation to
the new data set and retains the values in the PDV until the BY value changes in all the data
sets.

� If No, SAS determines which of the values comes first and writes the observation that
contains this value to the PDV. Then the observation is written to the new data set.

When the BY value changes in all the input data sets, the PDV is initialized to missing. The DATA
step merge continues to process every observation in each data set until it has processed all
observations in all data sets.

 341

Handling Unmatched Observations and Missing Values

All observations that are written to the PDV, including observations that have missing data and no
matching BY values, are written to the output data set.
� If an observation contains missing values for a variable, then the observation in the

output data set contains the missing values as well. Observations that have missing values
for the BY variable appear at the top of the output data set.

� If an input data set doesn't have a matching BY value, then the observation in the output
data set contains missing values for the variables that are unique to that input data set.

Renaming Variables

Sometimes you might have same-named variables in more than one input data set. In this case,
match-merging overwrites values of the same-named variable in the first data set with values of
the same-named variable in subsequent data sets. To prevent overwriting, use the RENAME=
data set option in the MERGE statement to rename variables.

Excluding Unmatched Observations

By default, match-merging combines all observations in all input data sets. However, you might
want to select only observations that match for two or more input data sets. To exclude
unmatched observations , use the IN= data set option and the subsetting IF statement in your
DATA step. The IN= data set option creates a variable to indicate whether the data set
contributed data to the current observation. The subsetting IF statement then checks the IN=
values and writes to the merged data set only observations that appear in the data sets for which
IN= is specified.

Selecting Variables

You can specify the variables you want to drop or keep by using the DROP= and KEEP= data set
options. When match-merging, you can specify these options in either the DATA statement or the
MERGE statement, depending on whether or not you want to process values of the variables in
that DATA step. When used in the DATA statement, the DROP= option simply drops the
variables from the new data set. However, they are still read from the original data set and are
available within the DATA step.

Points to Remember
� You can rename any number of variables in each occurrence of the RENAME= option.
� In match-merging, the IN= data set option can apply to any data set in the MERGE

statement. The RENAME=, DROP=, and KEEP= options can apply to any data set in the
DATA or MERGE statements.

� Use the KEEP= option instead of the DROP= option if more variables are dropped than
kept.

� When you specify multiple data set options for a particular data set, enclose them in a
single set of parentheses.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which program will combine Brothers.One and Brother s.Two to produce
Brothers.Three?

 342

a. data brothers.three;

b. set brothers.one;

c. set brothers.two;

d. run;

e. data brothers.three;

f. set brothers.one brothers.two;

g. run;

h. data brothers.three;

i. set brothers.one brothers.two;

j. by varx;

k. run;

l. data brothers.three;

m. merge brothers.one brothers.two;

n. by varx;

o. run;

2. Which program will combine Actors.Props1 and Actors .Props2 to produce
Actors.Props3?

a. data actors.props3;

b. set actors.props1;

c. set actors.props2;

d. run;

e. data actors.props3;

f. set actors.props1 actors.props2;

g. run;

h. data actors.props3;

i. set actors.props1 actors.props2;

j. by actor;

k. run;

l. data actors.props3;

m. merge actors.props1 actors.props2;

 343

n. by actor;

o. run;

3. If you submit the following program, which new data set is created?

data work.jobsatis;

 set work.dataone work.datatwo;

run;
a.

Caree
r

Supervi
s

Financ
e

Variet
y

Feedbac
k

Autonom
y

72 26 9 . . .

63 76 7 . . .

96 31 7 . . .

96 98 6 . . .

84 94 6 . . .

. . . 10 11 70

. . . 85 22 93

. . . 83 63 73

. . . 82 75 97

. . . 36 77 97
b.

Caree
r

Supervi
s

Financ
e

Variet
y

Feedbac
k

Autonom
y

72 26 9 10 11 70

63 76 7 85 22 93

96 31 7 83 63 73

96 98 6 82 75 97

84 94 6 36 77 97
c.

Career Supervis Finance

 344

63 76 7

96 31 7

96 98 6

84 94 6

10 11 70

85 22 93

83 63 73

82 75 97

36 77 97

4. If you concatenate the data sets below in the order shown, what is the value of
Sale in observation 2 of the new data set?

a. missing
b. $30,000
c. $40,000
d. you cannot concatenate these data sets

5. What happens if you merge the following data sets b y variable SSN?

a. The values of Age in the 1st data set overwrite the values of Age in the 2nd

data set.
b. The values of Age in the 2nd data set overwrite the values of Age in the 1st

data set.
c. The DATA step fails because the two data sets co ntain same-named

variables that have different values.
d. The values of Age in the 2nd data set are set to missing.

6. Suppose you merge data sets Health.Set1 and Health. Set2 below:

 345

Which output does the following program create?

data work.merged;

 merge health.set1(in=in1) health.set2(in=in2);

 by id;

 if in1 and in2;

run;

proc print data=work.merged;

run;
a.

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1274 F 50 . .

3 1387 F 57 64 142

4 2304 F 16 61 102

5 2486 F 63 . .

6 4425 F 48 . .

7 4759 F 60 . .

8 5438 F 42 62 168

9 6488 F 59 64 154

 346

11 9125 F 56 64 159
b.

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 50 64 142

3 2304 F 57 61 102

4 5438 F 16 62 168

5 6488 F 63 64 154

6 9012 F 48 63 157

7 9125 F 60 64 159

8 5438 F 42 . .

9 6488 F 59 . .

10 9012 F 39 . .

11 9125 F 56 . .
c.

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 57 64 142

3 2304 F 16 61 102

4 5438 F 42 62 168

5 6488 F 59 64 154

6 9012 F 39 63 157

7 9125 F 56 64 159

7. The data sets Ensemble.Spring and Ensemble.Summer b oth contain a variable
named Blue . How do you prevent the values of the variable Blue from being
overwritten when you merge the two data sets?

a. data ensemble.merged;

b. merge ensemble.spring(in=blue)

c. ensemble.summer;

d. by fabric;

e. run;

f. data ensemble.merged;

g. merge ensemble.spring(out=blue)

h. ensemble.summer;

i. by fabric;

 347

j. run;

k. data ensemble.merged;

l. merge ensemble.spring(blue=navy)

m. ensemble.summer;

n. by fabric;

o. run;

p. data ensemble.merged;

q. merge ensemble.spring(rename=(blue=navy))

r. ensemble.summer;

s. by fabric;

t. run;

8. What happens if you submit the following program to merge Blood.Donors1 and
Blood.Donors2, shown below?

data work.merged;

 merge blood.donors1 blood.donors2;

 by id;

run;

a. The Merged data set contains some missing values because not all

observations have matching observations in the othe r data set.
b. The Merged data set contains 8 observations.
c. The DATA step produces errors.
d. Values for Units in Blood.Donors2 overwrite values for Units in

Blood.Donors1.

9. If you merge Company.Staff1 and Company.Staff2 belo w by ID , how many
observations does the new data set contain?

a. 4
b. 5
c. 6

 348

d. 9

10.

If you merge data sets Sales.Reps, Sales.Close, and Sales.Bonus by ID , what is
the value of Bonus in the third observation in the new data set?

a. $4,000
b. $3,000
c. missing
d. can't tell from the information given

Answers

1. Correct answer: a

This is a case of one-to-one reading, which requires multiple SET statements. Notice that
where same- named variables occur, the values that are read in from the second data set
replace those that are read in from the first one. Also, the number of observations in the new
data set is the number of observations in the smallest original data set.

2. Correct answer: c

This is a case of interleaving, which requires a list of data set names in the SET statement
and one or more BY variables in the BY statement. Notice that observations in each BY
group are read sequentially, in the order in which the data sets and BY variables are listed.
The new data set contains all the variables from all the input data sets, as well as the total
number of records from all input data sets.

3. Correct answer: a

Concatenating appends the observations from one data set to another data set. The new
data set contains the total number of records from all input data sets, so b is incorrect. All the
variables from all the input data sets appear in the new data set, so c is incorrect.

4. Correct answer: a

The concatenated data sets are read sequentially, in the order in which they are listed in the
SET statement. The second observation in Sales.Reps does not contain a value for Sale , so
a missing value appears for this variable. (Note that if you merge the data sets, the value of
Sale for the second observation is ($30,000.)

5. Correct answer: b

If you have variables with the same name in more than one input data set, then values of the
same-named variable in the first data set in which it appears are overwritten by values of the
same-named variable in subsequent data sets.

 349

6. Correct answer: c

The DATA step uses the IN= data set option and the subsetting IF statement to exclude
unmatched observations from the output data set. So a and b, which contain unmatched
observations, are incorrect.

7. Correct answer: d

Match-merging overwrites same-named variables in the first data set with same-named
variables in subsequent data sets. To prevent overwriting, rename variables by using the
RENAME= data set option in the MERGE statement.

8. Correct answer: c

The two input data sets are not sorted by values of the BY variable, so the DATA step
produces errors and stops processing.

9. Correct answer: c

In this example, the new data set contains one observation for each unique value of ID . The
merged data set is shown below.

10. Correct answer: a

In the new data set, the third observation is the second observation for ID number 2 (Kelly
Windsor). The value for Bonus is retained from the previous observation because the BY
variable value didn't change. The new data set is shown below.

ID Name Sale Bonus

1 Nay Rong $28,000 $2,000

2 Kelly Windsor $30,000 $4,000

2 Kelly Windsor $40,000 $4,000

3 Julio Meraz $15,000 $3,000

3 Julio Meraz $20,000 $3,000

3 Julio Meraz $25,000 $3,000

4 Richard Krabill $35,000 $2,500

 350

Chapter 14: Transforming Data with SAS
Functions

Overview

Introduction

When planning modifications to SAS data sets, be sure to examine the many SAS functions that
are available. SAS functions are prewritten expressions that provide programming shortcuts for
many calculations and manipulations of data.

This chapter teaches you how to use a variety of functions, such as those shown in the table
below. You learn to convert data from one data type to another, to work with SAS date and time
values, and to manipulate the values of character variables.

Function Description Form Sample
Value

YEAR Extracts the year value from a SAS date
value.

YEAR(date) 2006

QTR Extracts the quarter value from a SAS
date value

QTR(date) 1

MONTH Extracts the month value from a SAS
date value.

MONTH(date) 12

DAY Extracts the day value from a SAS date
value.

DAY(date) 5

Objectives

In this chapter, you learn to
� convert character data to numeric data
� convert numeric data to character data
� create SAS date values
� extract the month, year, and interval from a SAS date value
� perform calculations with date and datetime values and time intervals
� extract, edit, and search the values of character variables
� replace or remove all occurrences of a particular word within a character string.

Understanding SAS Functions

SAS functions are built-in routines that enable you to complete many types of data
manipulations quickly and easily. Generally speaking, functions provide programming shortcuts.
There are many categories of SAS functions: arithmetic functions , financial functions ,
character functions , probability functions , and more.

Categories of SAS Functions

Array Mathematical

Bitwise Logical Operations Probability

 351

Categories of SAS Functions

Character Quantile

Character String Matching Random Number

Currency Conversion SAS File I/O

Date and Time Special

Descriptive Statistics State and Zip Code

Double Byte Character Set Trigonometric

External Files Truncation

Financial Variable Control

Hyperbolic Variable Information

Macro Web Tools

Some functions provide results that can also be obtained by using a SAS procedure. For
example, functions that provide descriptive statistics return values that can also be obtained
through the MEANS procedure.

SAS Functions That Compute Descriptive Statistics

Function Syntax Calculates

SUM sum(argument, argument,...) sum of values

MEAN mean(argument, argument,...) average of nonmissing values

MIN min(argument, argument,...) minimum value

MAX max(argument, argument,...) maximum value

VAR var(argument, argument,...) variance of the values

STD std(argument, argument,...) standard deviation of the values

Despite the similarity of certain SAS functions and procedures, don't assume that they can be
used interchangeably. For example, missing values might be handled differently for a similar
function and procedure.

Uses of SAS Functions

Using SAS functions, you can
� calculate sample statistics
� create SAS date values
� convert U.S. Zip codes to state postal codes
� round values
� generate random numbers
� extract a portion of a character value
� convert data from one data type to another.

This chapter concentrates on functions that
� convert data
� manipulate SAS date values

 352

� modify values of character variables.

However, be sure to explore the many other SAS functions, which are described in the SAS
documentation.

Example of a SAS Function

SAS functions can be used in DATA step programming statements and in some statistical
procedures. A SAS function can be specified anywhere that you would use a SAS expression, as
long as the function is part of a SAS statement.

Let's look at a simple example of a SAS function. The assignment statement below uses the
MEAN function to calculate the average of three exam scores that are stored in the variables
Exam1, Exam2, and Exam3.

AvgScore=mean(exam1,exam2,exam3);

When you reference a SAS function, the function returns a value that is based on the function
arguments. The MEAN function above contains three arguments: the variables Exam1, Exam2 ,
and Exam3. The function calculates the mean of the three variables that are listed as arguments.

Note Some functions require a specific number of arguments, whereas other

functions can contain any number of arguments. Some functions require no
arguments.

General Form of SAS Functions

Arguments, Variable Lists, Arrays

To use a SAS function, specify the function name followed by the function arguments, which are
enclosed in parentheses.

General form, SAS function:

function-name (argument-1<,argument-n>);

where arguments can be
� variables P H D Q x,y,z
� constants P H D Q 456,502,612,498
� expressions P H D Q 37*2,192/5 mean(22,34,56)

Warning Even if the function does not require arguments, the function name

must still be followed by parentheses—for example, function-name().

When a function contains more than one argument, the arguments are usually separated by
commas.

function-name(argument-1,argument-2,argument-n)

However, for some functions, variable lists and arrays can also be used as arguments, as long as
the list or the array is preceded by the word OF.

 353

Example

Here is an example of a function that contains multiple arguments. Notice that the arguments are
separated by commas.

mean(x1,x2,x3)

The arguments for this function can also be written as a variable list.

mean(of x1-x3)

Or, the variables can be referenced by an array .

mean(of newarray {*})

When specifying function arguments with a variable list or an array, be sure to precede the list or
the array with the word OF. If you omit the word OF, the function arguments might not be
interpreted as you expect. For example, the function below calculates the average of X1 minus
X3, not the average of the variables X1, X2 , and X3.

mean(x1-x3)

Target Variables

Now that you are familiar with the purpose and general form of SAS functions, let's think about
target variables . A target variable is the variable to which the result of a function is assigned. For
example, in the statement below, the variable AvgScore is the target variable.

AvgScore=mean(exam1,exam2,exam3);

Unless the length of the target variable has been previously defined, a default length is
assigned. The default length depends on the function; the default for character functions can be
as long as 200.

Default lengths could cause variables to use more space than necessary in your data set. So,
when using SAS functions, consider the appropriate length for any target variables. If necessary,
add a LENGTH statement to specify a length for the target variable before the statement that
creates the values of that variable.

Converting Data with Functions

Introduction to Converting Data

Suppose you are asked to complete a number of modifications to the data set Hrd.Temp . The
first modification is to create a new variable that contains the salary of temporary employees.
Examining the data set, you realize that one of the variables needed to calculate salaries is the
character variable PayRate . To complete the calculation, you need to convert PayRate from
character to numeric.
SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751 62232 14524 14565 8 25 200

 354

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

3 51

CHAP
EL
HILL

NC 2751
4

99747
49

14570 14608 40 26 208

data hrd.newtemp;

 set hrd.temp;

 Salary=payrate*hours;

run;

In such cases, you should use the INPUT function before attempting the calculation. The INPUT
function converts character data values to numeric values. The PUT function converts numeric
data values to character values. Both functions are discussed in this section.

Potential Problems of Omitting INPUT or PUT

What happens if you omit the INPUT function or the PUT function when converting data?

SAS will detect the mismatched variables and will try an automatic character-to-numeric or
numeric- to-character conversion. However, this process doesn't always work. Suppose each
value of PayRate begins with a dollar sign ($). When SAS tries to automatically convert the
values of PayRate to numeric values, the dollar sign blocks the process. The values cannot be
converted to numeric values. Similar problems can occur with automatic numeric-to-character
conversion.

Therefore, it is always best to include INPUT and PUT functions in your programs when
conversions occur.

Automatic Character-to-Numeric Conversion

Let's begin with the automatic conversion of character values to numeric values.

By default, if you reference a character variable in a numeric context such as an arithmetic
operation, SAS tries to convert the variable values to numeric. For example, in the DATA step
below, the character variable PayRate appears in a numeric context. It is multiplied by the
numeric variable Hours to create a new variable named Salary .

data hrd.newtemp;

 set hrd.temp;

 Salary=payrate*hours;

run;

When this step is executed, SAS automatically converts the character values of PayRate to
numeric values so that the calculation can occur. This conversion is completed by creating a
temporary numeric value for each character value of PayRate . This temporary value is used in
the calculation. The character values of PayRate are not replaced by numeric values.

 355

Whenever data is automatically converted, a message is written to the SAS log stating that the
conversion has occurred.
SAS Log

4 data hrd.: newtemp;

5 set hrd.temp;

6 Salary=payrate*hours;

7 run;

NOTE: Character values have been converted to

 numeric values at the places given by:

 (Line):(Column).

 6:11

NOTE: The data set Hrd.Newtemp has 40 observations

 and 19 variables.

NOTE: The data statement used 0.78 seconds.

When Automatic Conversion Occurs

Automatic character-to-numeric conversion occurs when a character value is
� assigned to a previously defined numeric variable, such as the numeric variable Rate

 Rate=payrate;
� used in an arithmetic operation

 Salary=payrate*hours;
� compared to a numeric value, using a comparison operator

 if payrate>=rate;
� specified in a function that requires numeric arguments.

 NewRate=sum(payrate,raise);

The automatic conversion
� uses the w.d informat, where w is the width of the character value that is being converted
� produces a numeric missing value from any character value that does not conform to

standard numeric notation (digits with an optional decimal point or leading sign).

Character Value automatic conversion Numeric Value

12.47 ► 12.47

-8.96 ► -8.96

1.243E1 ► 12.43

1,742.64 ► .

Restriction for WHERE Expressions

 356

The WHERE statement does not perform automatic conversions in comparisons. The simple
program below demonstrates what happens when a WHERE expression encounters the wrong
data type. The variable Number contains a numeric value, and the variable Character contains
a character value, but the two WHERE statements specify the wrong data type.

data work.convtest;

 Number=4;

 Character='4';

run;

proc print data=work.convtest;

 where character=4;

run;

proc print data=work.convtest;

 where number='4';

run;

This mismatch of character and numeric variables and values prevents the program from
processing the WHERE statements. Automatic conversion is not performed. Instead, the program
stops, and error messages are written to the SAS log.
SAS Log

1 data work.: convtest;

2 Number=4;

3 Character='4';

4 run;

NOTE: The data set Work.ConvTest has 1 observations and 2 variables.

5 proc print data=work.convtest;

6 where character=4;

7 run;

ERROR: Where clause operator requires compatible va riables.

NOTE: The SAS System stopped processing this step b ecause of errors.

8 proc print data=work.convtest;

9 where number='4';

10 run;

ERROR: Where clause operator requires compatible va riables.

zzzz

NOTE: The SAS System stopped processing this step b ecause of errors.

Explicit Character-to-Numeric Conversion

 357

In order to avoid the problems we saw in the previous section, use the INPUT function to convert
character data values to numeric values. To learn how to use this function, let's examine one of
the data set modifications needed for Hrd.Temp . As mentioned earlier, you need to calculate
employee salaries by multiplying the character variable PayRate by the numeric variable Hours .

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751
3

62232
51

14524 14565 8 25 200

CHAPE
L HILL

NC 2751
4

99747
49

14570 14608 40 26 208

RALEIG
H

NC 2761
2

69704
50

14516 14527 15 10 80

To calculate salaries, you write the following DATA step. It creates a new data set,
Hrd.Newtemp , to contain the original data plus the new variable Salary .

data hrd.newtemp;

 set hrd.temp;

 Salary=payrate*hours;

run;

However, you know that submitting this DATA step would cause an automatic character-to-
numeric conversion, because the character variable PayRate is used in a numeric context. You
can explicitly convert the character values of PayRate to numeric values by using the INPUT
function.

General form, INPUT function:

INPUT(source,informat)

where
� source indicates the character variable, constant, or expression to be converted to a

numeric value
� a numeric informat must also be specified, as in this example: input(payrate,2.)

When choosing the informat, be sure to select a numeric informat that can read the form of the
values.

Character Value Informat

2115233 7.

2,115,233 COMMA9.

Here's an example of the INPUT function:

 Test=input(saletest,comma9.);

 358

The function uses the numeric informat COMMA9. to read the values of the character variable
SaleTest . Then the resulting numeric values are stored in the variable Test .

Now let's use the INPUT function to convert the character values of PayRate to numeric values.
You begin the function by specifying PayRate as the source. Because PayRate has a length of
2, you choose the numeric informat 2. to read the values of the variable.

 input(payrate,2.)

Finally, you add the function to the assignment statement in your DATA step.

data hrd.newtemp;

 set hrd.temp;

 Salary=input(payrate,2.)*hours;

run;

After the DATA step is executed, the new data set (which contains the variable Salary) is
created.

SAS Data Set Hrd.Newtemp

Cit
y

St
at
e

Zi
p

Pho
ne

Start
Date

End
Date

Pay
Rate

D
ay

s

Ho
urs

Birth
Date

Sal
ary

CA
RY

NC 27
51
3

6224
549

14567 1462
1

10 11 88 7054 880

CA
RY

NC 27
51
3

6223
251

14524 1456
5

8 25 200 5757 160
0

Notice that no conversion messages appear in the SAS log when you use the INPUT function.
SAS Log

13 data hrd.: newtemp;

14 set hrd.temp;

15 Salary=input(payrate,2.)*hours;

16 run;

NOTE: The data set Hrd.Newtemp has 40 observations

 and 19 variables.

NOTE: The DATA statement used 0.55 seconds.

The form of the INPUT function is very similar to the form of the PUT function (which performs
numeric-to-character conversions).

INPUT(source,informat)

PUT(source,format)

 359

However, note that the INPUT function requires an informat, whereas the PUT function requires a
format. To remember which function requires a format versus an informat, note that the INPUT
function requires the in format.

Automatic Numeric-to-Character Conversion

The automatic conversion of numeric data to character data is very similar to character-to-
numeric conversion. Numeric data values are converted to character values whenever they are
used in a character context .

For example, the numeric values of the variable Site are converted to character values if you
� assign the numeric value to a previously defined character variable, such as the

character variable SiteCode: SiteCode=site �
� use the numeric value with an operator that requires a character value, such as the

concatenation operator: SiteCode=site||dept;
� specify the numeric value in a function that requires character arguments, such as the

SUBSTR function: Region=substr(site,1,4);

Specifically, SAS writes the numeric value with the BEST12. format, and the resulting character
value is right-aligned. This conversion occurs before the value is assigned or used with any
operator or function. Automatic numeric-to-character conversion can cause unexpected results.
For example, suppose the original numeric value has fewer than 12 digits. The resulting character
value will have leading blanks, which might cause problems when you perform an operation or
function.

Numeric-to-character conversion also causes a message to be written to the SAS log indicating
that the conversion has occurred.
SAS Log

9 data hrd.: newtemp;

10 set hrd.temp;

11 SiteCode=site;

12 run;

NOTE: Numeric values have been converted to charact er

 values at the places given by: (Line):(Column).

 11:13

NOTE: The data set HRD.NEWTEMP has 40 observations

 and 19 variables.

NOTE: The data statement used 1.06 seconds.

As we saw with the INPUT function, it is best not to rely on automatic conversion. When you
know that numeric data must be converted to character data, perform an explicit conversion by
including a PUT function in your SAS program. We look at the INPUT and PUT functions in the
next section.

 360

Explicit Numeric-to-Character Conversion

You can use the PUT function to explicitly convert numeric data values to character data values.

Let's use this function to complete one of the modifications that is needed for the data set
Hrd.Temp . Suppose you are asked to create a new character variable named Assignment that
concatenates the values of the numeric variable Site and the character variable Dept . The new
variable values must contain the value of Site followed by a slash (/) and then the value of
Dept — for example, 26/DP.

SAS Data Set Hrd.Temp

Overtime Job Contact Dept Site

4 Word processing Word Processor DP 26

. Filing, administrative duties Admin. Asst. PURH 57

. Organizational dev. specialist Consultant PERS 34

. Bookkeeping, word
processing

Bookkeeper
Asst.

BK 57

You write an assignment statement that contains the concatenation operator (||) to indicate that
Site

should be concatenated with Dept, using a slash as a separator. Note that the slash is enclosed
in quotation marks. All character constants must be enclosed in quotation marks.

data hrd.newtemp;

 set hrd.temp;

 Assignment=site||'/'||dept;

run;

You know that submitting this DATA step will cause SAS to automatically convert the numeric
values of Site to character values, because Site is used in a character context. The variable
Site

appears with the concatenation operator, which requires character values. To explicitly convert
the numeric values of Site to character values, you must add the PUT function to your
assignment statement.

General form, PUT function:
PUT(source,format)

where
� source indicates the numeric variable, constant, or expression to be converted to a

character value
� a format matching the data type of the source must also be specified, as in this example:

put(site,2.)

Note o The PUT function always returns a character string.

o The PUT function returns the source written with a format.
o The format must agree with the source in type.
o Numeric formats right-align the result; character formats left-

align the result.
o If you use the PUT function to create a variable that has not

 361

been previously identified, it creates a character variable whose
length is equal to the format width.

Because you are listing a numeric variable as the source, you must specify a numeric format.

Now that you know the general form of the PUT function, you can rewrite the assignment
statement in your DATA step to explicitly convert the numeric values of Site to character values.

To perform this conversion, write the PUT function, specifying Site as the source. Because
Site

has a length of 2, choose 2. as the numeric format. After you add this PUT function to the
assignment statement, the DATA step creates the new data set that contains Assignment .

data hrd.newtemp;

 set hrd.temp;

 Assignment= put(site,2.) ||'/'||dept;

run;

SAS Data Set Hrd.Newtemp

Overtime Job Contact Dept Site BirthDate Assignment

4 Word
processing

Word
Process
or

DP 26 7054 26/DP

. Filing,
administrativ
e
duties

Admin.
Asst.

PURH 57 5757 57/PURH

Notice that no conversion messages appear in the SAS log when you use the PUT function.
SAS Log

13 data hrd.: newtemp;

14 set hrd.temp;

15 Assignment=put(site,2.)||'/'||dept;

16 run;

NOTE: The data set Hrd.Newtemp has 40 observations

 and 19 variables.

NOTE: The DATA statement used 0.71 seconds.

Matching the Data Type

Remember that the format specified in the PUT function must match the data type of the source.

 PUT(source,format)

 362

So, to do an explicit numeric-to-character data conversion, you specify a numeric source and a
numeric format. The form of the PUT function is very similar to the form of the INPUT function.

 PUT(source,format)

 INPUT(source , informat)

Note that the PUT function requires a format, whereas the INPUT function requires an informat.
To remember which function requires a format versus an informat, note that the INPUT function
requires the in format.

Manipulating SAS Date Values with Functions

SAS Date and Time Values

SAS includes a variety of functions that enable you to work with SAS date values . SAS stores a
date value as the number of days from January 1, 1960, to a given date. Here is an example:

A SAS time value is stored as the number of seconds since midnight. Here is an example:

Consequently, a SAS datetime value is stored as the number of seconds between midnight on
January 1, 1960, and a given date and time.

SAS stores date values as numbers so that you can easily sort the values or perform arithmetic
computations. You can use SAS date values as you use any other numeric values.

data test(keep=name totday);

 set hrd.temp;

 TotDay=enddate-startdate;

run;

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDat
e

EndDat
e

PayRat
e

Day
s

Hour
s

CAR
Y

NC 2751
3

622454
9

14567 14621 10 11 88

CAR
Y

NC 2751
3

622325
1

14524 14565 8 25 200

You can display SAS date values in a variety of forms by associating a SAS format with the
values. The format affects only the display of the dates, not the date values in the data set. For
example, the FORMAT statement below associates the DATE9. format with the variables
StartDate and EndDate . A portion of the output created by this PROC PRINT step appears
below.

proc print data=hrd.temp;

 363

 format startdate enddate date9.;

run;

Days Hours

City Stat
e

Zip Phone StartDate EndDate Pa
y
Ra
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

19NOV19
99

12JAN20
00

10 11 88

CARY NC 2751
3

62232
51

07OCT19
99

17NOV19
99

8 25 200

CHAPE
L HILL

NC 2751
4

99747
49

22NOV19
99

30DEC19
99

40 26 208

RALEIG
H

NC 2761
2

69704
50

29SEP19
99

10OCT19
99

15 10 80

SAS date values are valid for dates that are based on the Gregorian calendar from A.D. 1582
through A.D. 20,000.

Note Use caution when working with historical dates. The Gregorian calendar was

used throughout most of Europe from 1582, but Great Britain and the American
colonies did not adopt the calendar until 1752.

SAS Date Functions

SAS stores dates, times, and datetimes as numeric values. You can use several functions to
create these values.

Function Typical Use Result

MDY date=mdy(mon,day,yr); SAS date

TODAY
DATE

now=today();

now=date();

today's date as a SAS date

TIME curtime=time(); current time as a SAS time

TIME curtime=time(); current time as a SAS time

You use other functions to extract months, quarters, days, and years from SAS date values.

Function Typical Use Result

DAY day=day(date); day of month (1-31)

QTR quarter=qtr(date); quarter (1-4)

WEEKDAY wkday=weekday(date); day of week (1-7)

MONTH month=month(date); month (1-12)

YEAR yr=year(date); year (4 digits)

 364

Function Typical Use Result

INTCK x=intck('day', d1 , d2);

x=intck('week', d1 , d2);

x=intck('month', d1 , d2);

x=intck('qtr', d1 , d2);

x=intck('year', d1 , d2);

days from D1 to D2
weeks from D1 to D2
months from D1 to D2
quarters from D1 to D2
years from D1 to D2

INTNX x=intnx(' interval ', start-
from , increment);

date, time, or datetime
value

DATDIF

YRDIF

x=datdif(' date1 ', date2,
ACT/ACT);

x=yrdif(' date1 ', date2, ACT/ACT);

days between date1 and
date2

years between date1 and
date2

In the following pages, you will see several SAS date functions, showing how they are used to
both create and extract date values.

YEAR, QTR, MONTH, and DAY Functions

Every SAS date value can be queried for the values of its year, month, and day. You extract
these values by using the functions YEAR, QTR, MONTH, and DAY. They all work the same
way, so we'll discuss them as a group.

General form, YEAR, QTR, MONTH, and DAY functions:

YEAR(date)
QTR(date)
MONTH(date)
DAY(date)

where date is a SAS date value that is specified either as a variable or as a SAS date constant.
For more information about SAS date constants, see the SAS documentation.

The YEAR function returns a four-digit numeric value that represents the year—for example,
2002. The QTR function returns a value of 1, 2, 3, or 4 from a SAS date value to indicate the
quarter of the year in which a date value falls. The MONTH function returns a numeric value that
ranges from 1 to 12, representing the month of the year. The value 1 represents January, 2
represents February, and so on. The DAY function returns a numeric value from 1 to 31,
representing the day of the month. As you can see, these functions are very similar in purpose
and form.

Function Description Form Sample
Value

YEAR Extracts the year value from a SAS date
value.

YEAR(date) 2005

QTR Extracts the quarter value from a SAS date
value

QTR(date) 1

 365

Function Description Form Sample
Value

MONTH Extracts the month value from a SAS date
value.

MONTH(date) 12

DAY Extracts the day value from a SAS date
value.

DAY(date) 5

Finding the Year

Now let's use the YEAR function to complete a task.

Suppose you need to create a subset of the data set Hrd.Temp that contains information about
all temporary employees who were hired during a specific year, such as 1998. Hrd.Temp
contains the dates on which employees began work with the company and their ending dates, but
there is no year variable.

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751
3

62232
51

14524 14565 8 25 200

CHAPE
L HILL

NC 2751
4

99747
49

14570 14608 40 26 208

RALEIG
H

NC 2761
2

69704
50

14516 14527 15 10 80

To determine the year in which employees were hired, you can apply the YEAR function to the
variable that contains the employee start date, StartDate . You write the YEAR function as

 year(startdate)

Then, to create the new data set, you include this function in a subsetting IF statement within a
DATA step. This subsetting IF statement specifies that only observations in which the YEAR
function extracts a value of 1998 are placed in the new data set.

data hrd.temp98;

 set hrd.temp;

 if year(startdate)=1998;

run;

Finally, you add a PROC PRINT step to the program so that you can view the new data set.
Notice that the PROC PRINT step includes a FORMAT statement to display the variables
StartDate and EndDate with the DATE9. format.

data hrd.temp98;

 set hrd.temp;

 if year(startdate)=1998;

proc print data=hrd.temp98;

 366

 format startdate enddate date9.;

run;

Here is a portion of the PROC PRINT output that is created by your program. Notice that the new
data set contains information about those employees who were hired in 1998.

City Stat
e

Zip Phone StartDate EndDate Pa
y
Ra
te

Day
s

Hour
s

CHAPE
L HILL

NC 2751
4

99720
70

02AUG19
98

17AUG19
98

12 12 96

DURHA
M

NC 2771
3

36330
20

06OCT19
98

10OCT19
98

10 5 40

Finding the Year and Month

Let's use the YEAR and MONTH functions to complete a simple task.

Suppose you need to create a subset of the data set Hrd.Temp that contains information about
all temporary employees who were hired in November 1999. Hrd.Temp contains the beginning
and ending dates for staff employment, but there are no month or year variables in the data set.

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751
3

62232
51

14524 14565 8 25 200

CHAPE
L HILL

NC 2751
4

99747
49

14570 14608 40 26 208

RALEIG
H

NC 2761
2

69704
50

14516 14527 15 10 80

To determine the year in which employees were hired, you can apply the YEAR function to the
variable that contains the employee start date, StartDate . You write the YEAR function as

 year(startdate)

Likewise, to determine the month in which employees were hired, you apply the MONTH function
to StartDate .

 month(startdate)

To create the new data set, you include these functions in a subsetting IF statement within a
DATA step. The subsetting IF statement specifies that the new data set includes only
observations in which the YEAR function extracts a value of 1999 and the MONTH function
extracts a value of 11 (for November).

data hrd.nov99;

 set hrd.temp;

 367

 if year(startdate)=1999 and month(startdate)=11;

run;

Finally, you add a PROC PRINT step to the program so that you can view the new data set.
Notice that the PROC PRINT step includes a FORMAT statement to display the variables
StartDate and EndDate with the DATE9. format.

data hrd.nov99;

 set hrd.temp;

 if year(startdate)=1999 and month(startdate)=11;

proc print data=hrd.nov99;

 format startdate enddate date9.;

run;

Here is a portion of the PROC PRINT output that is created by your program. Notice that the new
data set contains information about only those employees who were hired in November 1999.

City Sta
te

Zip Phon
e

StartDat
e

EndDat
e

PayR
ate

Da
ys

Hou
rs

CARY NC 275
13

62245
49

19NOV1
999

12JAN20
00

10 11 88

CHAPEL
HILL

NC 275
14

99747
49

22NOV1
999

30DEC1
999

40 26 208

DURHAM NC 277
13

36336
18

02NOV1
999

13NOV1
999

12 9 72

CARRBO
RO

NC 275
10

99767
32

16NOV1
999

04JAN20
00

15 7 64

WEEKDAY Function

The WEEKDAY function enables you to extract the day of the week from a SAS date value.

General form, WEEKDAY function:

WEEKDAY (date)

where date is a SAS date value that is specified either as a variable or as a SAS date constant.
For more information about SAS date constants, see the SAS documentation.

The WEEKDAY function returns a numeric value from 1 to 7. The values represent the days of
the week.

Value equals Day of the Week

1 = Sunday

2 = Monday

3 = Tuesday

 368

Value equals Day of the Week

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

For example, suppose the data set Radio.Sch contains a broadcast schedule. The variable
AirDate contains SAS date values. To create a data set that contains only weekend
broadcasts, you use the WEEKDAY function in a subsetting IF statement. You include only
observations in which the value of AirDate corresponds to a Saturday or Sunday.

data radio.schwkend;

 set radio.sch;

 if weekday(airdate)=7 or weekday(airdate)=1;

run;

MDY Function

The MDY function creates a SAS date value from numeric values that represent the month, day,
and year. For example, suppose the data set Hrd.Temp contains the employee start date in three
numeric variables, Month , Day , and Year .

SAS Data Set Hrd.Temp

City Stat
e

Zip Phon
e

Mont
h

Da
y

Ye
ar

PayRa
te

Day
s

Hou
rs

CARY NC 2751
3

62245
49

1 12 200
0

10 11 88

CARY NC 2751
3

62232
51

11 17 199
9

8 25 200

CHAPE
L HILL

NC 2751
4

99747
49

12 30 199
9

40 26 208

RALEI
GH

NC 2761
2

69704
50

10 10 199
9

15 10 80

Having the start date in three variables makes it difficult to perform calculations that are based on
the length of employment. You can convert these numeric values to useful SAS date values by
applying the MDY function.

General form, MDY function:

MDY(month,day,year)

where
� month can be a variable that represents the month, or a number from 1-12
� day can be a variable that represents the day, or a number from 1-31
� year can be a variable that represents the year, or a number that has 2 or 4 digits.

 369

In the data set Hrd.Temp , the values for month, day, and year are stored in the numeric variables
Month , Day , and Year . You write the following MDY function to create the SAS date values:

 mdy(month,day,year)

Then place this function in an assignment statement to create a new variable to contain the SAS
date values.

data hrd.newtemp(drop=month day year);

 set hrd.temp;

 Date=mdy(month,day,year);

run;

Here is the new data set that contains the variable Date .

SAS Data Set Hrd.Newtemp

City State Zip Phone PayRate Days Hours Date

CARY NC 27513 6224549 10 11 88 14621

CARY NC 27513 6223251 8 25 200 14565

CHAPEL HILL NC 27514 9974749 40 26 208 14608

RALEIGH NC 27612 6970450 15 10 80 14527

Remember, to display SAS date values in a more readable form, you can associate a SAS format
with the values. For example, the FORMAT statement below associates the DATE9. format with
the variable Date . A portion of the output that is created by this PROC PRINT step appears
below.

roc print data=hrd.newtemp;

 format date date9.;

run;

City State Zip Phone PayRate Days Hours Date

City Stat
e

Zip Phone PayRat
e

Day
s

Hour
s

Date

CARY NC 2751
3

622454
9

10 11 88 12JAN2000

CARY NC 2751
3

622325
1

8 25 200 17NOV199
9

CHAPEL
HILL

NC 2751
4

997474
9

40 26 208 30DEC1999

RALEIG
H

NC 2761
2

697045
0

15 10 80 10OCT1999

The MDY function can also add the same SAS date to every observation. This might be useful if
you want to compare a fixed beginning date with differing end dates. Just use numbers instead of
data set variables when providing values to the MDY function.

data hrd.newtemp;

 370

 set hrd.temp;

 DateCons=mdy(6,17,2002);

proc print data=hrd.newtemp;

 format datecons date9.;

run;

City State Zip Phone PayRat
e

Day
s

Hour
s

DateCon
s

CARY NC 2751
3

622454
9

10 11 88 17JUN200
2

CARY NC 2751
3

622325
1

8 25 200 17JUN200
2

CHAPEL
HILL

NC 2751
4

997474
9

40 26 208 17JUN200
2

RALEIGH NC 2761
2

697045
0

15 10 80 17JUN200
2

Warnin
g

Be careful when entering and formatting year values. The MDY
function accepts two- digit values for the year, but SAS
interprets two-digit values according to the 100-year span that is
set by the YEARCUTOFF= system option . The default value of
YEARCUTOFF= is 1920. For details, see Chapter 19, Reading
Date and Time Values .

Whenever possible, use four-digit year values in the MDY function:
� MDY(5,10,20) = May 10, 1920
� MDY(5,10,2020) = May 10, 2020

To display the years clearly, format SAS dates with the DATE9. format. This forces the year to
appear with four digits, as shown above in the Date and DateCons variables of your
Hrd.Newtemp output.

Let's look at another example of the MDY function. The data set Dec.Review contains a variable
named Day. This variable contains the day of the month for each employee's performance
appraisal. The appraisals were all completed in December 1998.

SAS Data Set Dec.Review

Site Day Rate Name

Westin 12 A2 Mitchell, K

Stockton 4 A5 Worton, M

Center City 17 B1 Smith, A

The following DATA step uses the MDY function to create a new variable named ReviewDate .
This variable contains the SAS date value for the date of each performance appraisal.

data dec.review98;

 set dec.review;

 ReviewDate=mdy(12,day,1998);

run;

 371

SAS Data Set Dec.Review98

Site Day Rate Name ReviewDate

Westin 12 A2 Mitchell,
K

14225

Stockton 4 A5 Worton,
M

14217

Center
City

17 B1 Smith,
A

14230

Note If you specify an invalid date in the MDY function, SAS assigns a missing value

to the target variable.

data dec.review98;

 set dec.review;

 ReviewDate=mdy(15 ,day,1998);

run;

SAS Data Set Dec.Review98

Site Day Rate Name ReviewDate

Westin 12 A2 Mitchell, K .

Stockton 4 A5 Worton, M .

Center City 17 B1 Smith, A .

DATE and TODAY Functions

The DATE and TODAY functions return the current date from the system clock as a SAS date
value. The DATE and TODAY functions have the same form and can be used interchangeably.

General form, DATE and TODAY functions:

DATE()
TODAY()

These functions require no arguments, but they must still be followed by parentheses.

Let's add a new variable, which contains the current date, to the data set Hrd.Temp . To create
this variable, write an assignment statement such as the following:

 EditDate=date();

After this statement is added to a DATA step and the step is submitted, the data set that contains
EditDate is created.

data hrd.newtemp;

 set hrd.temp;

 EditDate=date();

run;

 372

Note For this example, the SAS date values shown below were created by

submitting this program on January 15, 2000.

SAS Data Set Hrd.Newtemp

EndDate EditDate

14621 14624

14565 14624

14608 14624

Remember, to display these SAS date values in a different form, you can associate a SAS format
with the values. For example, the FORMAT statement below associates the DATE9. format with
the variable EditDate . A portion of the output that is created by this PROC PRINT step appears
below.

proc print data=hrd.newtemp;

 format editdate date9.;

run;

EndDate EditDate

EndDate EditDate

14621 15JAN2000

14565 15JAN2000

14608 15JAN2000

The DATE and TODAY functions can also create a SAS date value from the current date.

ThisDate=date(); or ThisDate=today();

INTCK Function

The INTCK function returns the number of time intervals that occur in a given time span. You can
use it to count the passage of days, weeks, months, and so on.

General form, INTCK function:

INTCK('interval',from,to)

where
� 'interval' specifies a character constant or variable. The value must be one of the

following:

DAY DTMONTH

WEEKDAY DTWEEK

WEEK HOUR

TENDAY MINUTE

SEMIMONTH SECOND

MONTH

 373

QTR

SEMIYEAR

YEAR

� from specifies a SAS date, time, or datetime value that identifies the beginning of the time
span.

� to specifies a SAS date, time, or datetime value that identifies the end of the time span.

Note The type of interval (date, time, or datetime) must match the type of value

in from.

The INTCK function counts intervals from fixed interval beginnings, not in multiples of an interval
unit from the from value. Partial intervals are not counted. For example, WEEK intervals are
counted by Sundays rather than seven-day multiples from the from argument. MONTH intervals
are counted by day 1 of each month, and YEAR intervals are counted from 01JAN, not in 365-day
multiples.

Consider the results in the following table. The values that are assigned to the variables Weeks,
Months , and Years are based on consecutive days.

SAS Statement Value

Weeks = intck ('week','31 dec 2000'd,'01jan2001'd); 0

Months = intck ('month','31 dec 2000'd,'01jan2001'd); 1

Years = intck ('year','31 dec 2000'd,'01jan2001'd); 1

Because December 31, 2000, is a Sunday, no WEEK interval is crossed between that day and
January 1, 2001. However, both MONTH and YEAR intervals are crossed.

The following statement creates the variable Years and assigns it a value of 2. The INTCK
function determines that 2 years have elapsed between June 15, 1999, and June 15, 2001.

 Years=intck('year','15jun1999'd,'15jun2001'd);

Note As shown here, the from and to dates are often specified as date constants . A

date constant is a date in the form ddMMMyyyy in quotation marks followed by
the character d.

Likewise, the following statement assigns the value 24 to the variable Months .

 Months=intck('month','15jun1999'd,'15jun2001'd);

However, the following statement assigns 0 to the variable Years,

even though 364 days have elapsed. In this case the YEAR boundary

(01JAN) is not crossed.

 Years=intck('year','01jan2002'd,'31dec2002'd);

Example: The INTCK Function

A common use of the INTCK function is to identify periodic events such as due dates and
anniversaries.

 374

The following program identifies mechanics whose 20th year of employment occurs in the current
month. It uses the INTCK function to compare the value of the variable Hired to the date on
which the program is run.

data work.anniv20;

 set flights.mechanics

 (keep=id lastname firstname hired);

 Years=intck('year',hired,today());

 if years=20 and month(hired)=month(today());

proc print data=work.anniv20;

 title '20-Year Anniversaries This Month';

run;

The following output is created when the program is run in December 1999.

20-Year Anniversaries This Month

Obs ID LastName FirstName Hired Years

1 1403 BOWDEN EARL 24DEC79 20

2 1121 HERNANDEZ MICHAEL 10DEC79 20

3 1412 MURPHEY JOHN 08DEC79 20

INTNX Function

The INTNX function is similar to the INTCK function. The INTNX function applies multiples of a
given interval to a date, time, or datetime value and returns the resulting value. You can use the
INTNX function to identify past or future days, weeks, months, and so on.

General form, INTNX function:

INTNX('interval',start-from,increment<,'alignment'>)

where
� 'interval' specifies a character constant or variable
� start-from specifies a starting SAS date, time, or datetime value
� increment specifies a negative or positive integer that represents time intervals toward

the past or future
� 'alignment' (optional) forces the alignment of the returned date to the beginning, middle,

or end of the interval.

Note The type of interval (date, time, or datetime) must match the type of value

in start-from and increment.

When you specify date intervals, the value of the character constant or variable that is used in
interval must be one of the following:

DAY DTMONTH

WEEKDAY DTWEEK

WEEK HOUR

 375

TENDAY MINUTE

SEMIMONTH SECOND

MONTH

QTRSEMIYEAR

YEAR

For example, the following statement creates the variable TargetYear and assigns it a SAS
date value of 13515, which corresponds to January 1, 1997.

 TargetYear=intnx('year','05feb94'd,3);

Likewise, the following statement assigns the value for the date July 1, 2001, to the variable
TargetMonth .

 TargetMonth=intnx('semiyear','01jan2001'd,1);

As you know, SAS date values are based on the number of days since January 1, 1960. Yet the
INTNX function can use intervals of weeks, months, years, and so on. What day should be
returned when these larger intervals are used?

That's the purpose of the optional alignment argument: it lets you specify whether the date value
should be at the beginning, middle, or end of the interval. When specifying date alignment in the
INTNX function, use the following arguments or their corresponding aliases:

BEGINNING B

MIDDLE M

END E

SAMEDAY S

The best way to understand the alignment argument is to see its effect on identical statements.
The following table shows the results of three INTNX statements that differ only in the value of
alignment.

SAS Statement Date Value

MonthX=intnx('month','01jan95'd,5,' b'); 12935 (June 1, 1995)

MonthX=intnx('month','01jan95'd,5,' m'); 12949 (June 15, 1995)

MonthX=intnx('month','01jan95'd,5,' e'); 12964 (June 30, 1995)

These statements count five months from January, but the returned value depends on whether
alignment specifies the beginning, middle, or end day of the resulting month. If alignment is not
specified, the beginning day is returned by default.

DATDIF and YRDIF Functions

The DATDIF and YRDIF functions calculate the difference in days and years between two SAS
dates, respectively. Both functions accept start dates and end dates that are specified as SAS
date values. Also, both functions use a basis argument that describes how SAS calculates the
date difference.

 376

General form, DATDIF and YRDIF functions:

DATDIF(start_date,end_date,basis)
YRDIF(start_date,end_date,basis)

where
� start_date specifies the starting date as a SAS date value
� end_date specifies the ending date as a SAS date value
� basis specifies a character constant or variable that describes how SAS calculates the

date difference.

There are two character strings that are valid for basis in the DATDIF function and four character
strings that are valid for basis in the YRDIF function. These character strings and their meanings
are listed in the table below.

Character String Meaning Valid In
DATDIF

Valid In
YRDIF

'30/360' specifies a 30 day month and a 360
day year

yes yes

'ACT/ACT' uses the actual number of days or
years between dates

yes yes

'ACT/360' uses the actual number of days
between dates in calculating the
number of years (calculated by the
number of days divided by 360)

no yes

'ACT/365' uses the actual number of days
between dates in calculating the
number of years (calculated by the
number of days divided by 365)

no yes

Modifying Character Values with Functions

Introduction to Modifying Character Values

This section teaches you how to use SAS functions to manipulate the values of character
variables. After completing this section, you will be able to
� replace the contents of a character value
� trim trailing blanks from a character value
� search a character value and extract a portion of the value
� convert a character value to uppercase or lowercase.

To begin, let's look at some of the modifications that need to be made to the character variables
in Hrd.Temp . These modifications include
� separating the values of one variable into multiple variables

SAS Data

Name LastName FirstName MiddleName

CICHOCK, ELIZABETH MARIE→ CICHOCK ELIZABETH MARIE

 377

SAS Data

Name LastName FirstName MiddleName

BENINCASA, HANNAH LEE → BENINCASA HANNAH LEE

� replacing a portion of a character variable's values

SAS Data

Phone Phone

6224549 → 4334549

6223251 → 4333251

� searching for a specific string within a variable's values.

SAS Data

Job

filing, administrative duties

bookkeeping, word processing, accounting

The character functions listed below can help you complete these tasks.

Function Purpose

SCAN returns a specified word from a character value.

SUBSTR extracts a substring or replaces character values.

TRIM trims trailing blanks from character values.

CATX concatenates character strings, removes leading and trailing blanks, and
inserts separators.

INDEX searches a character value for a specific string.

FIND searches for a specific substring of characters within a character string
that you specify.

UPCASE converts all letters in a value to uppercase.

LOWCASE converts all letters in a value to lowercase.

PROPCASE converts all letters in a value to proper case.

TRANWRD replaces or removes all occurrences of a pattern of characters within a
character string.

SCAN Function

The SCAN function enables you to separate a character value into words and to return a
specified word. Let's look at the following example to see how the SCAN function works.

The data set Hrd.Temp stores the names of temporary employees in the variable Name. The
Name variable contains the employees' first, middle, and last names.

SAS Data Set Hrd.Temp

 378

Agency ID Name

Administrative Support, Inc. F274 CICHOCK, ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA, HANNAH LEE

However, suppose you want to separate the value of Name into three variables: one variable to
store the first name, one to store the middle name, and one to store the last name. You can use
the SCAN function to create these new variables.

SAS Data Set Hrd.Temp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

Specifying Delimiters

The SCAN function uses delimiters , which are characters that are specified as word separators,
to separate a character string into words. For example, if you are working with the character
string below and you specify the comma as a delimiter, the SCAN function separates the string
into three words.

Then the function returns whichever word you specify. In this example, if you specify the third
word, the SCAN function returns the word HIGH.

Here's another example. Once again, let's use the comma as a delimiter, and specify that the
third word be returned.

209 RADCLIFFE ROAD, CENTER CITY, NY, 92716

In this example, the word returned by the SCAN function is NY.

Specifying Multiple Delimiters

When using the SCAN function, you can specify as many delimiters as needed to correctly
separate the character expression. When you specify multiple delimiters, SAS uses all of the
delimiters as word separators. For example, if you specify both the slash and the hyphen as
delimiters, the SCAN function separates the following text string into three words:

The SCAN function treats two or more contiguous delimiters, such as the parenthesis and slash
below, as one delimiter. Also, leading delimiters have no effect.

 379

Default Delimiters

If you do not specify delimiters when using the SCAN function, default delimiters are used. The
default delimiters are

 blank . < (+ | & ! $ *) ; ^ - / , %

SYNTAX

Now that you are familiar with how the SCAN function works, let's examine the syntax of the
function.

General form, SCAN function:

SCAN(argument,n,delimiters)

where
� argument specifies the character variable or expression to scan
� n specifies which word to read
� delimiters are special characters that must be enclosed in single quotation marks (' ').

Use the SCAN function to create your new name variables for Hrd.Temp . To begin, examine the
values of the existing Name variable to determine which characters separate the names in the
values. Notice that blanks and commas appear between the names and that the employee's last
name appears first, then the first name, and then the middle name.

SAS Data Set Hrd.Temp

Agency ID Name

Administrative Support, Inc. F274 CICHOCK, ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA, HANNAH LEE

OD Consulting, Inc. F054 SHERE, BRIAN THOMAS

New Time Temps Agency F077 HODNOFF, RICHARD LEE

To create the LastName variable to store the employee's last name, you write an assignment
statement that contains the following SCAN function:

 LastName=scan(name,1,' ,');

Note that a blank and a comma are specified as delimiters. You can also write the function
without listing delimiters, because the blank and comma are default delimiters.

 LastName=scan(name,1);

The complete DATA step that is needed to create LastName , FirstName , and MiddleName
appears below. Notice that the original Name variable is dropped from the new data set.

data hrd.newtemp(drop=name);

 set hrd.temp;

 LastName=scan(name,1);

 FirstName=scan(name,2);

 380

 MiddleName=scan(name,3);

run;

Specifying Variable Length

Note that the SCAN function assigns a length of 200 to each target variable. (Remember, a target
variable is the variable that receives the result of the function.) So, if you submit the DATA step
above, the LastName , FirstName , and MiddleName variables are each assigned a length of
200. This length is longer than necessary for these variables.

To save storage space, add a LENGTH statement to your DATA step, and specify an
appropriate length for all three variables. Because SAS sets the length of a new character
variable the first time it is encountered in the DATA step, be sure to place the LENGTH statement
before the assignment statements that contain the SCAN function.

ata hrd.newtemp(drop=name);

 set hrd.temp;

 length LastName FirstName MiddleName $ 10;

 lastname=scan(name,1);

 firstname=scan(name,2);

 middlename=scan(name,3);

run;

SUBSTR Function

The SUBSTR function can be used to
� extract a portion of a character value
� replace the contents of a character value.

Let's begin with the task of extracting a portion of a value. In the data set Hrd.Newtemp , the
names of temporary employees are stored in three name variables: LastName , FirstName ,
and MiddleName .

SAS Data Set Hrd.Newtemp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

OD Consulting, Inc. F054 SHERE BRIAN THOMAS

New Time Temps Agency F077 HODNOFF RICHARD LEE

However, suppose you want to modify the data set to store only the middle initial instead of the
full middle name. To do so, you must extract the first letter of the middle name values and assign
these values to the new variable MiddleInitial .

SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

Administrative Support, Inc. F274 CICHOCK ELIZABETH M

Administrative Support, Inc. F101 BENINCASA HANNAH L

 381

SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

OD Consulting, Inc. F054 SHERE BRIAN T

New Time Temps Agency F077 HODNOFF RICHARD L

The SUBSTR function enables you to extract any number of characters from a character string,
starting at a specified position in the string.

General form, SUBSTR function:

SUBSTR(argument,position,<n>)

where
� argument specifies the character variable or expression to scan.
� position is the character position to start from.
� n specifies the number of characters to extract. If n is omitted, all remaining characters

are included in the substring.

Using the SUBSTR function, you can extract the first letter of the MiddleName value to create
the new variable MiddleInitial .

SAS Data Set Hrd.Newtemp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

OD Consulting, Inc. F054 SHERE BRIAN THOMAS

New Time Temps Agency F077 HODNOFF RICHARD LEE

You write the SUBSTR function as:

 substr(middlename,1,1)

This function specifies that a character string be extracted from the value of MiddleName . The
string to be extracted begins in position 1 and contains one character. Then, you place this
function in an assignment statement in your DATA step.

data work.newtemp(drop=middlename);

 set hrd.newtemp;

 MiddleInitial=substr(middlename,1,1);

run;

The new MiddleInitial variable is given the same length as MiddleName . The MiddleName
variable is then dropped from the new data set.

SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

Administrative Support, Inc. F274 CICHOCK ELIZABETH M

 382

SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

Administrative Support, Inc. F101 BENINCASA HANNAH L

OD Consulting, Inc. F054 SHERE BRIAN T

New Time Temps Agency F077 HODNOFF RICHARD L

You can use the SUBSTR function to extract a substring from any character value if you know the
position of the value.

Positioning the SUBSTR Function

SAS uses the SUBSTR function to extract a substring or to modify a variable's values, depending
on the position of the function in the assignment statement.

When the function is on the right side of an assignment statement, the function returns the
requested string.

 MiddleInitial=substr(middlename,1,1);

But if you place the SUBSTR function on the left side of an assignment statement, the function is
used to modify variable values.

 substr(region,1,3)='NNW';

When the SUBSTR function modifies variable values, the right side of the assignment statement
must specify the value to place into the variable. For example, to replace the fourth and fifth
characters of a variable named Test with the value 92, you write the following assignment
statement:

substr(test,4,2)='92';

Test Test

S7381K2 → S7392K2

S7381K7 → S7392K7

Replacing Text

There is a second use for the SUBSTR function. This function can also be used to replace the
contents of a character variable . For example, suppose the local phone exchange 622 was
replaced by the exchange 433. You need to update the character variable Phone in Hrd.Temp to
reflect this change.

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751
3

62232
51

14524 14565 8 25 200

 383

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CHAPE
L HILL

NC 2751
4

99747
49

14570 14608 40 26 208

RALEIG
H

NC 2761
2

69704
50

14516 14527 15 10 80

You can use the SUBSTR function to complete this modification. The syntax of the SUBSTR
function, when used to replace a variable's values, is identical to the syntax for extracting a
substring.

SUBSTR(argument,position,n)

However, in this case,
� the first argument specifies the character variable whose values are to be modified.
� the second argument specifies the position at which the replacement is to begin.
� the third argument specifies the number of characters to replace. If n is omitted, all

remaining characters are replaced.

Now let's use the SUBSTR function to replace the 622 exchange in the variable Phone . You
begin by writing this assignment statement:

data hrd.temp2;

 set hrd.temp;

 substr(phone,1,3)='433';

run;

This statement specifies that the new exchange 433 should be placed in the variable Phone ,
starting at character position 1 and replacing three characters.

SAS Data Set Hrd.Temp

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

62245
49

14567 14621 10 11 88

CARY NC 2751
3

62232
51

14524 14565 8 25 200

CHAP
EL
HILL

NC 2751
4

99747
49

14570 14608 40 26 208

But executing this DATA step places the value 433 into all values of Phone . You only need to
replace the values of Phone that contain the 622 exchange. So, you add an assignment
statement to the DATA step to extract the exchange from Phone . Notice that the SUBSTR
function is used on the right side of the assignment statement.

data hrd.temp2(drop=exchange);

 set hrd.temp;

 Exchange=substr(phone,1,3);

 384

 substr(phone,1,3)='433';

run;

Now the DATA step needs an IF-THEN statement to verify the value of the variable Exchange. If
the exchange is 622, the assignment statement executes to replace the value of Phone .

data hrd.temp2(drop=exchange);

 set hrd.temp;

 Exchange=substr(phone,1,3);

 if exchange='622' then substr(phone,1,3)='433';

run;

After the DATA step is executed, the appropriate values of Phone contain the new exchange.

SAS Data Set Hrd.Temp2

City Stat
e

Zip Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

CARY NC 2751
3

43345
49

14567 14621 10 11 88

CARY NC 2751
3

43332
51

14524 14565 8 25 200

CHAP
EL
HILL

NC 2751
4

99747
49

14570 14608 40 26 208

Once again, remember the rules for using the SUBSTR function. If the SUBSTR function is on the
right side of an assignment statement, the function extracts a substring.

 MiddleInitial=substr(middlename,1,1);

If the SUBSTR function is on the left side of an assignment statement, the function replaces the
contents of a character variable.

 substr(region,1,3)='NNW';

SCAN Function Compared with SUBSTR Function

The SCAN function is similar to the SUBSTR function. Let's briefly compare the two. Both the
SCAN and SUBSTR functions can extract a substring from a character value:
� SCAN extracts words within a value that is marked by delimiters.
� SUBSTR extracts a portion of a value by starting at a specified location.

The SUBSTR function is best used when you know the exact position of the substring that you
want to extract from the character value. The substring does not need to be marked by delimiters.
For example, the first two characters of the variable ID identify the class level of college students.
The position of these characters does not vary within the values of ID .

SAS Data

Name ID

Trentonson, Matthew Robert SO45467

Truell, Marcia Elizabeth SR32881

 385

The SUBSTR function is the best choice to extract class level information from ID . By contrast,
the SCAN function is best used when
� you know the order of the words in the character value
� the starting position of the words varies
� the words are marked by some delimiter.

TRIM Function

The TRIM function enables you to remove trailing blanks from character values. To learn about
the TRIM function, let's modify the data set Hrd.Temp .

The data set Hrd.Temp contains four address variables: Address , City , State , and Zip .

SAS Data Set Hrd.Temp (Selected Variables)

Agency ID Name Addre
ss

City Sta
te

Zip Phon
e

StartD
ate

Administra
tive
Support,
Inc.

F2
74

CICHOCK
,
ELIZABE
TH
MARIE

65
ELM
DR

CA
RY

NC 275
13

62245
49

14567

Administra
tive
Support,
Inc

F1
01

BENINCA
SA,
HANNAH
LEE

11
SUN
DR

CA
RY

NC 275
13

62232
51

14524

You need to create one address variable that contains the values of the three variables Address ,
City , and Zip . (Because all temporary employees are hired locally, the value of State does not
need to be included in the new variable.)

SAS Data Set Hrd.NewTemp

Agency I
D

Name NewAd
dress

Pho
ne

Start
Date

End
Date

Pay
Rate

D
ay
s

Ho
ur
s

Adminis
trative
Support,
Inc.

F
2
7
4

CICHO
CK,
ELIZAB
ETH
MARIE

65 ELM
DR,
CARY,
27513

622
454
9

1456
7

1462
1

10 11 88

Adminis
trative
Support,
Inc.

F
1
0
1

BENIN
CASA,
HANNA
H LEE

11 SUN
DR,
CARY,
27513

622
325
1

1452
4

1456
5

8 25 20
0

Writing a DATA step to create this new variable is easy. You include an assignment statement
that contains the concatenation operator (||), as shown below.

data hrd.newtemp(drop=address city state zip);

 set hrd.temp;

 NewAddress=address||', '||city||', '||zip;

run;

 386

The concatenation operator (||) enables you to concatenate character values. In this assignment
statement, the character values of Address , City , and Zip are concatenated with two
character constants that consist of a comma and a blank. The commas and blanks are needed to
separate the street, city, and ZIP code values. The length of NewAddress is the sum of the
length of each variable and constant that is used to create the new variable. Notice that this
DATA step drops the original address variables from the new data set.

When the DATA step is executed, you notice that the values of NewAddress do not appear as
expected. The values of the new variable contain embedded blanks.

SAS Data Set Hrd.NewTemp

NewAddress

65 ELM DRIVE , CARY , 27513

11 SUN DRIVE , CARY , 27513

712 HARDWICK STREET , CHAPEL HILL , 27514

5372 WHITEBUD ROAD , RALEIGH , 27612

These blanks appear in the values of NewAddress because the values of the original address
variables contained trailing blanks. Whenever the value of a character variable does not match
the length of the variable, SAS pads the value with trailing blanks.

Address
length=32

City
length=15

Zip
length=5

65 ELM DRIVE··············· RALEIGH········ 27612

11 SUN DRIVE··············· DURHAM········· 27612

712 HARTWICK STREET········ CHAPEL HILL···· 27514

So, when the original address values are concatenated to create NewAddress , the trailing blanks
in the original values are included in the values of the new variable. The variable Zip is the only
one that does not contain trailing blanks.

NewAddress
length=56

65 ELM DRIVE·················, RALEIGH········, 276 12

11 SUN DRIVE·················, DURHAM·········, 276 12

712 HARTWICK STREET··········, CHAPEL HILL····, 275 14

The TRIM function enables you to remove trailing blanks from character values.

General form, TRIM function:

TRIM(argument)

where argument can be any character expression, such as
� a character variable: trim(address)
� another character function: trim(left(id)) .

 387

To remove the blanks from the variable NewAddress , include the TRIM function in your
assignment statement. Trim the values of Address and City .

data hrd.newtemp(drop=address city state zip);

 set hrd.temp;

 NewAddress= trim(address) ||', '|| trim(city) ||', '||zip;

run;

The revised DATA step creates the values that you expect for NewAddress .

SAS Data Set Hrd.Newtemp

NewAddress

65 ELM DRIVE, CARY, 27513

11 SUN DRIVE, CARY, 27513

712 HARDWICK STREET, CHAPEL HILL, 27514

5372 WHITEBUD ROAD, RALEIGH, 27612

Points to Remember

Keep in mind that the TRIM function does not affect how a variable is stored. Suppose you trim
the values of a variable and then assign these values to a new variable. The trimmed values are
padded with trailing blanks again if the values are shorter than the length of the new variable.

Here's an example. In the DATA step below, the trimmed value of Address is assigned to the
new variable Street . When the trimmed value is assigned to Street , trailing blanks are added
to the value to match the length of 20.

data temp;

 set hrd.temp;

 length Street $ 20;

 Street=trim(address);

run;

Address
length=32

Street
length=20

65 ELM DRIVE·················· 65 ELM DRIVE········

11 SUN DRIVE·················· 11 SUN DRIVE········

712 HARTWICK STREET··········· 712 HARTWICK STREET·

CATX Function

The CATX function enables you to concatenate character strings, remove leading and trailing
blanks, and insert separators. The CATX function returns a value to a variable, or returns a value
to a temporary buffer. The results of the CATX function are usually equivalent to those that are
produced by a combination of the concatenation operator and the TRIM and LEFT functions.

 388

Remember that you learned to use the TRIM function along with the concatenation operator to
create one address variable that contains the values of the three variables Address , City , and
Zip , and to remove extra blanks from the new values. You used the DATA step shown below.

data hrd.newtemp(drop=address city state zip);

 set hrd.temp;

 NewAddress= trim(address) ||', '|| trim(city) ||', '||zip;

run;

You can accomplish the same concatenation using only the CATX function.

General form, CATX function:

CATX(separator,string-1 <,...string-n>)

where
� separator specifies the character string that is used as a separator between

concatenated strings
� string specifies a SAS character string.

You want to create the new variable NewAddress by concatenating the values of the Address ,
City , and Zip variables from the data set Hrd.Temp . You want to strip excess blanks from the
old variable values and separate the variable values with a comma. The DATA step below uses
the CATX function to create NewAddress .

data hrd.newtemp(drop=address city state zip);

 set hrd.temp;

 NewAddress= catx(', ',address , city, zip);

run;

The revised DATA step creates the values that you expect for NewAddress .

SAS Data Set Hrd.Newtemp

NewAddress

65 ELM DRIVE, CARY, 27513

11 SUN DRIVE, CARY, 27513

712 HARDWICK STREET, CHAPEL HILL, 27514

5372 WHITEBUD ROAD, RALEIGH, 27612

INDEX Function

The INDEX function enables you to search a character value for a specified string. The INDEX
function searches values from left to right, looking for the first occurrence of the string. It returns
the position of the string's first character; if the string is not found, it returns a value of 0.

Suppose you need to search the values of the variable Job , which lists job skills. You want to
create a data set that contains the names of all temporary employees who have word processing
experience.

 389

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

The INDEX function can complete this search.

General form, INDEX function:

INDEX(source,excerpt)

where
� source specifies the character variable or expression to search
� excerpt specifies a character string that is enclosed in quotation marks (' ').

To search for the occurrences of word processing in the values of the variable Job , you write the
INDEX function as shown below. Note that the character string is enclosed in quotation marks.

 index(job,'word processing')

Then, to create the new data set, include the INDEX function in a subsetting IF statement. Only
those observations in which the function locates the string and returns a value greater than 0 are
written to the data set.

data hrd.datapool;

 set hrd.temp;

 if index(job,'word processing') > 0;

run;

Here's your data set that shows the temporary employees who have word processing experience.

SAS Data Set Hrd.Datapool

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

bookkeeping, word processing BOOKKEEPER AST BK 57

word processing, sec. work WORD PROCESSOR DP 95

bookkeeping, word processing BOOKKEEPER AST BK 44

word processing WORD PROCESSOR DP 59

word processing, sec. work WORD PROCESSOR PUB 38

word processing WORD PROCESSOR DP 44

word processing WORD PROCESSOR DP 90

 390

Note that the INDEX function is case sensitive , so the character string that you are searching for
must be specified exactly as it is recorded in the data set. For example, the INDEX function
shown below would not locate any employees who have word processing experience.

 index(job,'WORD PROCESSING')

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

bookkeeping, word processing BOOKKEEPER ASST. BK 57

Finding a String Regardless of Case

To ensure that all occurrences of a character string are found, you can use the UPCASE or
LOWCASE function with the INDEX function. The UPCASE and LOWCASE functions enable you
to convert variable values to uppercase or lowercase letters. You can then specify the character
string in the INDEX function accordingly.

 index(upcase(job),'WORD PROCESSING')

 index(lowcase(job),'word processing')

FIND Function

The FIND function enables you to search for a specific substring of characters within a character
string that you specify. The FIND function searches a string for the first occurrence of the
substring, and returns the position of that substring. If the substring is not found in the string,
FIND returns a value of 0.

The FIND function is similar to the INDEX function. Remember that you used the INDEX function
to search the values of the variable Job in Hrd.Temp in order to create a data set that contains
the names of all temporary employees who have word processing experience.

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

You can also use the FIND function to complete this search.

General form, FIND function:

FIND(string,substring<,modifiers><,startpos>)

where
� string specifies a character constant, variable, or expression that will be searched for

substrings

 391

� substring is a character constant, variable, or expression that specifies the substring of
characters to seach for in string

� modifiers is a character constant, variable, or expression that specifies one or more
modifiers

� startpos is an integer that specifies the position at which the search should start and the
direction of the search.

Note If string or substring is a character literal, you must enclose it in quotation

marks.

The modifiers argument enables you to specify one or more modifiers for the function, as listed
below.
� The modifier i causes the FIND function to ignore character case during the search. If this

modifier is not specified, FIND searches for character substrings with the same case as the
characters in substring.

� The modifier t trims trailing blanks from string and substring.

Note If the modifier is a constant, enclose it in quotation marks. Specify multiple

constants in a single set of quotation marks.

If startpos is not specified, FIND starts the search at the beginning of the string and searches the
string from left to right. If startpos is specified, the absolute value of startpos determines the
position at which to start the search. The sign of startpos determines the direction of the search. If
startpos is positive, FIND searches from startpos to the right; and if startpos is negative, FIND
searches from startpos to the left.

Example

The values of the variable Job are all lowercase. Therefore, to search for the occurrence of word
processing in the values of the variable Job , you write the FIND function as shown below. Note
that the character substring is enclosed in quotation marks.

 find(job,'word processing','t')

Then, to create the new data set, include the FIND function in a subsetting IF statement. Only
those observations in which the function locates the string and returns a value greater than 0 are
written to the data set.

data hrd.datapool;

 set hrd.temp;

 if find(job,'word processing','t') > 0;

run;

UPCASE Function

The UPCASE function converts all letters in a character expression to uppercase.

General form, UPCASE function:

UPCASE(argument)

where argument can be any SAS expression, such as a character variable or constant.

 392

Let's use the UPCASE function to convert the values of a character variable in Hrd.Temp . The
values of the variable Job appear in lowercase letters.

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

bookkeeping, word processing BOOKKEEPER ASST. BK 57

To convert the values of Job to uppercase, you write the UPCASE function as follows:

 upcase(job)

Then place the function in an assignment statement in a DATA step.

data hrd.newtemp;

 set hrd.temp;

 Job=upcase(job);

run;

Here's the new data set that contains the converted values of Job .

SAS Data Set Hrd.Newtemp

Job Contact Dept Site

WORD PROCESSING WORD PROCESSOR DP 26

FILING, ADMINISTRATIVE DUTIES ADMIN. ASST. PURH 57

ORGANIZATIONAL DEV.
SPECIALIST

CONSULTANT PERS 34

BOOKKEEPING, WORD
PROCESSING

BOOKKEEPER ASST. BK 57

LOWCASE Function

The LOWCASE function converts all letters in a character expression to lowercase.

General form, LOWCASE function:

LOWCASE (argument)

where argument can be any SAS expression, such as a character variable or constant.

Here's an example of the LOWCASE function. In this example, the function converts the values of
a variable named Title to lowercase letters.

 lowcase(title)

 393

Another example of the LOWCASE function is shown below. The assignment statement in this
DATA step uses the LOWCASE function to convert the values of the variable Contact to
lowercase.

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

data hrd.newtemp;

 set hrd.temp;

 Contact=lowcase(contact);

run;

After this DATA step is executed, the new data set is created. Notice the converted values of the
variable Contact .

SAS Data Set Hrd.Newtemp

Job Contact Dept Site

word processing word processor DP 26

filing, administrative duties admin. asst. PURH 57

organizational dev. specialist consultant PERS 34

PROPCASE Function

The PROPCASE function converts all words in an argument to proper case (so that the first letter
in each word is capitalized).

General form, PROPCASE function:

PROPCASE(argument<,delimiter(s)>)

where
� argument can be any SAS expression, such as a character variable or constant
� delimiter(s) specifies one or more delimiters that are enclosed in quotation marks. The

default delimiters are blank, forward slash, hyphen, open parenthesis, period, and tab.

Note If you specify delimiter(s), then the default delimiters are no longer in

effect.

The PROPCASE function copies a character argument and converts all uppercase letters to
lowercase letters. It then converts to uppercase the first character of a word that is preceded by a
delimiter. PROPCASE uses the default delimiters unless you use the delimiter(s) argument.

Here's an example of the PROPCASE function. In this example, the function converts the values
of a variable named Title to proper case and uses the default delimiters.

 lowcase(title)

 394

Another example of the PROPCASE function is shown below. The assignment statement in this
DATA step uses the PROPCASE function to convert the values of the variable Contact to
proper case.

SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

data hrd.newtemp;

 set hrd.temp;

 Contact=propcase(contact);

run;

After this DATA step is executed, the new data set is created. Notice the converted values of the
variable Contact .

SAS Data Set Hrd.Newtemp

Job Contact Dept Site

word processing Word Processor DP 26

filing, administrative duties Admin. Asst. PURH 57

organizational dev. specialist Consultant PERS 34

TRANWRD Function

The TRANWRD function replaces or removes all occurrences of a pattern of characters within a
character string. The translated characters can be located anywhere in the string.

General form, TRANWRD function:

TRANWRD(source,target,replacement)

where
� source specifies the source string that you want to translate
� target specifies the string that SAS searches for in source
� replacement specifies the string that replaces target.

Note target and replacement can be specified as variables or as character

strings. If you specify character strings, be sure to enclose the strings in
quotation marks (' ' or " ").

You can use TRANWRD function to update variables in place. In this example, the function
updates the values of Name by changing every occurrence of the string Monroe to Manson.

 name=tranwrd(name,'Monroe','Manson')

Another example of the TRANWRD function is shown below. In this case, two assignment
statements use the TRANWRD function to change all occurrences of Miss or Mrs. to Ms.

 395

SAS Data Set Work.Before

Name

Mrs. Millicent Garrett Fawcett

Miss Charlotte Despard

Mrs. Emmeline Pankhurst

Miss Sylvia Pankhurst

data work.after;

 set work.before;

 name=tranwrd(name,'Miss','Ms.');

 name=tranwrd(name,'Mrs.','Ms.');

run;

After this DATA step is executed, the new data set is created. Notice the changed strings within
the variable Name.

SAS Data Set Work.After

Name

Ms. Millicent Garrett Fawcett

Ms. Charlotte Despard

Ms. Emmeline Pankhurst

Ms. Sylvia Pankhurst

Modifying Numeric Values with Functions

Introduction

You've seen how SAS functions can be used to
� convert between character and numeric variable values
� manipulate SAS date values
� modify values of character variables.

SAS provides additional functions to create or modify numeric values. These include arithmetic,
financial, and probability functions. There are far too many of these functions to explore them all
in detail, but let's look at two examples.

INT Function

To return the integer portion of a numeric value, use the INT function . Any decimal portion of the
INT function argument is discarded.

General form, INT function:

INT(argument)

 396

where argument is a numeric variable, constant, or expression.

The two data sets shown below give before-and-after views of values that are truncated by the
INT function.

ROUND Function

To round values to the nearest specified unit, use the ROUND function .

General form, ROUND function:

ROUND(argument,round-off-unit)

where
� argument is a numeric variable, constant, or expression.
� round-off-unit is numeric and nonnegative.

If a round-off unit is not provided, a default value of 1 is used, and the argument is rounded to the
nearest integer. The two data sets shown below give before-and-after views of values that are
modified by the ROUND function.

To learn more about SAS functions that modify numeric values, see the SAS documentation.

Nesting SAS Functions

Throughout this lesson, you've seen examples of individual functions. For example, in this
assignment statement the SCAN function selects the middle name (third word) from the variable
Name:

 MiddleName=scan(name,3);

Then this assignment statement uses the SUBSTR function to select the first letter from the
variable MiddleName :

 MiddleInitial=substr(MiddleName,1,1);

 397

To write more efficient programs, however, you can nest functions as appropriate. For example,
you can nest the SCAN function within the SUBSTR function in an assignment statement to
compute the value for MiddleInitial :

 MiddleInitial= substr(scan(name,3),1,1);

This example of nested numeric functions determines the number of years between June 15,
1999, and today:

 Years= intck('year','15jun1999'd,today());

Note You can nest any function as long as the function that is used as the argument

meets the requirements for the argument.

Summary

Text Summary

Using SAS Functions

SAS functions can be used to convert data and to manipulate the values of character variables.
Functions are written by specifying the function name, then its arguments in parentheses.
Arguments can include variables, constants, or expressions. Although arguments are typically
separated by commas, they can also be specified as variable lists or arrays.

Automatic Character-to-Numeric Conversion

When character variables are used in a numeric context, SAS tries to convert the character
values to numeric values. Numeric context includes arithmetic operations, comparisons with
numeric values, and assignment to previously defined numeric variables. The original character
values are not changed. The conversion creates temporary numeric values and places a note in
the SAS log.

Explicit Character-to-Numeric Conversion

The INPUT function provides direct, controlled conversion of character values to numeric values.
When a character variable is specified in a numeric informat, the INPUT function generates
numeric values without placing a note in the SAS log.

Automatic Numeric-to-Character Conversion

When numeric variables are used in a character context, SAS tries to convert the numeric values
to character values. Character context includes concatenation operations, use in functions that
require character arguments, and assignment to previously defined character variables. The
original numeric values are not changed; the conversion creates temporary character values and
places a note in the SAS log.

Explicit Numeric-to-Character Conversion

The PUT function provides direct, controlled conversion of numeric values to character values.
The format specified in a PUT function must match the source, so use an appropriate numeric
format to create the new character values. No note will appear in the SAS log.

 398

SAS Date and Time Values

SAS date values are stored as the number of days from January 1, 1960; time values are stored
as the number of seconds since midnight. These values can be displayed in a variety of forms by
associating them with SAS formats.

YEAR, QTR, MONTH, and DAY Functions

To extract the year, quarter, month, or day value from a SAS date value, specify the YEAR, QTR,
MONTH, or DAY function followed by the SAS date value in parentheses. The YEAR function
returns a four-digit number; QTR returns a value of 1, 2, 3, or 4; MONTH returns a number from 1
to 12; and DAY returns 1 to 31.

WEEKDAY Function

To extract the day of the week from a SAS date value, specify the function WEEKDAY followed
by the SAS date value in parentheses. The function returns a numeric value from 1 to 7,
representing the day of the week.

MDY Function

To create a SAS date value for a month, day, and year, specify the MDY function followed by the
date values. The result can be displayed in several ways by applying a SAS date format. SAS
interprets two-digit values according to the 100-year span that is set by the YEARCUTOFF=
system option. The default value of YEARCUTOFF= is 1920.

DATE and TODAY Functions

To convert the current date to a SAS date value, specify the DATE or TODAY function without
arguments. The DATE and TODAY functions can be used interchangeably.

INTCK Function

To count the number of time intervals that occur in a time span, use the INTCK function and
specify the interval constant or variable, the beginning date value, and the ending date value. The
INTCK function counts intervals from fixed interval beginnings, not in multiples of an interval unit.
Partial intervals are not counted.

INTNX Function

To apply multiples of an interval to a date value, use the INTNX function and specify the interval
constant or variable, the start-from date value, and the increment. Include the alignment option to
specify whether the date returned should be at the beginning, middle, or end of the interval.

DATDIF and YRDIF Functions

To calculate the difference between dates as a number of days or as a number of years, use the
DATDIF or YRDIF function. These functions accept SAS date values and return a difference
between the date values calculated according to the basis that you specify in the function.

 399

SCAN Function

The SCAN function separates a character string to return a word based on its position. It defines
words by counting delimiters, which are characters that are used as word separators. The name
of the function is followed, in parentheses, by the name of the character variable, the number of
delimiters to count, and the specified delimiters enclosed in quotation marks.

SUBSTR Function

The SUBSTR function can be used to extract or replace any portion of a character string. To
extract values, place the function on the right side of an assignment statement and specify, in
parentheses, the name of the character variable, the starting character position, and the number
of characters to extract. To replace values, place the function on the left side of an assignment
statement and specify, in parentheses, the name of the variable being modified, the starting
character position, and the number of characters to replace.

SCAN Function versus SUBSTR Function

Both the SCAN and SUBSTR functions can extract a substring from a character value. SCAN
relies on delimiters, whereas SUBSTR reads values from specified locations. Use SCAN when
you know the delimiter and the order of words. Use SUBSTR when the positions of the characters
don't vary.

TRIM Function

Because SAS pads the length of character values, unwanted spaces can sometimes appear after
strings are concatenated. To remove trailing blanks from character values, specify the TRIM
function with the name of a character variable. Remember that trimmed values will be padded
with blanks again if they are shorter than the length of the new variable.

CATX Function

You can concatenate character strings, remove leading and trailing blanks, and insert separators
in one step by using the CATX function. The results of the CATX function are usually equivalent
to those that are produced by a combination of the concatenation operator and the TRIM and
LEFT functions.

INDEX Function

To test character values for the presence of a string, use the INDEX function and specify, in
parentheses, the name of the variable and the string enclosed in quotation marks. The INDEX
function can be used with an IF statement when you are creating a data set. However, only those
observations in which the function finds the string and returns a value greater than 0 are written to
the new data set.

FIND Function

You can also use the FIND function to search for a specific substring of characters within a
character string that you specify. The FIND function is similar to the INDEX function, but the FIND
function enables you to ignore character case in your search and to trim trailing blanks. The FIND
function can also begin the search at any position that you specify in the string.

 400

UPCASE Function

The UPCASE function converts all letters in a character expression to uppercase. Include the
function in an assignment statement, and specify the variable name in parentheses.

LOWCASE Function

Uppercase letters in character values can be converted to lowercase by using the LOWCASE
function. Include the function in an assignment statement, and specify the variable name in
parentheses.

PROPCASE Function

Character values can be converted to proper case by using the PROPCASE function. Include the
function in an assignment statement, and specify the variable name in parentheses. Remember
that you can specify delimiters or use the default delimiters.

TRANWRD Function

You can replace or remove patterns of characters in the values of character variables by using
the TRANWRD function. Use the function in an assignment statement, and specify the source,
target, and replacement strings or variables in parentheses.

INT Function

To return the integer portion of a numeric value, use the INT function. Any decimal portion of the
INT function argument is discarded.

ROUND Function

To round values to the nearest specified unit, use the ROUND function. If a round-off unit is not
provided, the argument is rounded to the nearest integer.

Nesting SAS Functions

To write more efficient programs, you can nest functions as appropriate. You can nest any
functions as long as the function that is used as the argument meets the requirements for the
argument.

Points to Remember
� Even if a function doesn't require arguments, the function name must still be followed by

parentheses.
� When specifying a variable list or an array as a function argument, be sure to precede the

list or the array with the word OF.
� To remember which function requires a format versus an informat, note that the INPUT

function requires the in format.
� If you specify an invalid date in the MDY function, a missing value is assigned to the

target variable.
� The SCAN function treats contiguous delimiters as one delimiter; leading delimiters have

no effect.
� When using the SCAN function, you can save storage space by adding a LENGTH

statement to your DATA step to set an appropriate length for your new variable(s). Place the
LENGTH statement before the assignment statements that contain the SCAN function.

 401

� When the SUBSTR function is on the left side of an assignment statement, it replaces
variable values. When SUBSTR is on the right side of an assignment statement, it extracts
variable values. The syntax of the function is the same; only the placement of the function
changes.

� The INDEX function is case sensitive. To ensure that all forms of a character string are
found, use the UPCASE or LOWCASE function with the INDEX function.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which function calculates the average of the variab les Var1 , Var2 , Var3 , and
Var4 ?

a. mean(var1,var4)
b. mean(var1-var4)
c. mean(of var1,var4)
d. mean(of var1-var4)

2. Within the data set Hrd.Temp, PayRate is a character variable and Hours is a
numeric variable. What happens when the following p rogram is run?

data work.temp;

 set hrd.temp;

 Salary=payrate*hours;

run;
a. SAS converts the values of PayRate to numeric values. No message is

written to the log.
b. SAS converts the values of PayRate to numeric values. A message is

written to the log.
c. SAS converts the values of Hours to character values. No message is

written to the log.
d. SAS converts the values of Hours to character values. A message is

written to the log.

3. A typical value for the character variable Target is 123,456. Which statement
correctly converts the values of Target to numeric values when creating the
variable TargetNo ?

a. TargetNo=input(target,comma6.);
b. TargetNo=input(target,comma7.);
c. TargetNo=put(target,comma6.);
d. TargetNo=put(target,comma7.);

4. A typical value for the numeric variable SiteNum is 12.3. Which statement
correctly converts the values of SiteNum to character values when creating the
variable Location ?

a. Location=dept||'/'||input(sitenum,3.1);
b. Location=dept||'/'||input(sitenum,4.1);
c. Location=dept||'/'||put(sitenum,3.1);
d. Location=dept||'/'||put(sitenum,4.1);

5. Suppose the YEARCUTOFF= system option is set to 192 0. Which MDY function

 402

creates the date value for January 3, 2020?
a. MDY(1,3,20)
b. MDY(3,1,20)
c. MDY(1,3,2020)
d. MDY(3,1,2020)

6. The variable Address2 contains values such as Piscataway, NJ . How do you
assign the two-letter state abbreviations to a new variable named State ?

a. State=scan(address2,2);
b. State=scan(address2,13,2);
c. State=substr(address2,2);
d. State=substr(address2,13,2);

7. The variable IDCode contains values such as 123FA and 321MB. The fourth
character identifies sex. How do you assign these c haracter codes to a new
variable named Sex?

a. Sex=scan(idcode,4);
b. Sex=scan(idcode,4,1);
c. Sex=substr(idcode,4);
d. Sex=substr(idcode,4,1);

8. Due to growth within the 919 area code, the telepho ne exchange 555 is being
reassigned to the 920 area code. The data set Clien ts.Piedmont includes the
variable Phone , which contains telephone numbers in the form 919-555-1234.
Which of the following programs will correctly chan ge the values of Phone?

a. data work.piedmont(drop=areacode exchange); se t clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5 ,3); if
areacode='919' and exchange='555' then scan(phone,1 ,3)='920'; run;

b. data work.piedmont(drop=areacode exchange); se t clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5 ,3); if
areacode='919' and exchange='555' then phone=scan(' 920',1,3); run;

c. data work.piedmont(drop=areacode exchange); se t clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5 ,3); if
areacode='919' and exchange='555' then substr(phone ,1,3)='920'; run;

d. data work.piedmont(drop=areacode exchange); se t clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5 ,3); if
areacode='919' and exchange='555' then phone=substr ('920',1,3); run;

9. Suppose you need to create the variable FullName by concatenating the values
of FirstName , which contains first names, and LastName , which contains last
names. What's the best way to remove extra blanks b etween first names and
last names?

a. data work.maillist; set retail.maillist; lengt h FullName $ 40;
fullname=trim firstname||' '||lastname; run;

b. data work.maillist; set retail.maillist; lengt h FullName $ 40;
fullname=trim(firstname)||' '||lastname; run;

c. data work.maillist; set retail.maillist; lengt h FullName $ 40;
fullname=trim(firstname)||' '||trim(lastname);run;

d. data work.maillist; set retail.maillist; lengt h FullName $ 40;
fullname=trim(firstname||' '||lastname); run;

10. Within the data set Furnitur.Bookcase, the variable Finish contains values
such as ash/cherry/teak/matte-black . Which of the following creates a subset of
the data in which the values of Finish contain the string walnut ? Make the

 403

search for the string case-insensitive.
a. data work.bookcase; set furnitur.bookcase; if index(finish,walnut) = 0;

run;
b. data work.bookcase; set furnitur.bookcase; if index(finish,'walnut') > 0;

run;
c. data work.bookcase; set furnitur.bookcase; if

index(lowcase(finish),walnut) = 0; run;
d. data work.bookcase; set furnitur.bookcase; if

index(lowcase(finish),'walnut') > 0;run;

Answers

1. Correct answer: d

Use a variable list to specify a range of variables as the function argument. When specifying
a variable list, be sure to precede the list with the word OF. If you omit the word OF, the
function argument might not be interpreted as expected.

2. Correct answer: b

When this DATA step is executed, SAS automatically converts the character values of
PayRate to numeric values so that the calculation can occur. Whenever data is automatically
converted, a message is written to the SAS log stating that the conversion has occurred.

3. Correct answer: b

You explicitly convert character values to numeric values by using the INPUT function. Be
sure to select an informat that can read the form of the values.

4. Correct answer: d

You explicitly convert numeric values to character values by using the PUT function. Be sure
to select a format that can read the form of the values.

5. Correct answer: c

Because the YEARCUTOFF= system option is set to 1920, SAS sees the two-digit year
value 20 as 1920. Four-digit year values are always read correctly

6. Correct answer: a

The SCAN function is used to extract words from a character value when you know the order
of the words, when their position varies, and when the words are marked by some delimiter.
In this case, you don't need to specify delimiters, because the blank and the comma are
default delimiters.

7. Correct answer: d

The SUBSTR function is best used when you know the exact position of the substring to
extract from the character value. You specify the position to start from and the number of
characters to extract.

8. Correct answer: c

 404

The SUBSTR function replaces variable values if it is placed on the left side of an assignment
statement. When placed on the right side (as in Question 7), the function extracts a
substring.

9. Correct answer: b

The TRIM function removes trailing blanks from character values. In this case, extra blanks
must be removed from the values of FirstName . Although answer c also works, the extra
TRIM function for the variable LastName is unnecessary. Because of the LENGTH
statement, all values of FullName are padded to 40 characters.

10. Correct answer: d

Use the INDEX function in a subsetting IF statement, enclosing the character string in
quotation marks. Only those observations in which the function locates the string and returns
a value greater than 0 are written to the data set.

 405

Chapter 15: Generating Data with DO Loops

Overview

Introduction

You can execute SAS statements repeatedly by placing them in a DO loop . DO loops can
execute any number of times in a single iteration of the DATA step. Using DO loops enables you
to write concise DATA steps that are easier to change and debug.

For example, the DO loop in this program eliminates the need for 12 separate programming
statements to calculate annual earnings:

data finance.earnings;

 set finance.master;

 Earned=0;

 do count=1 to 12;

 earned+(amount+earned)*(rate/12);

 end;

run;

You can also use DO loops to
� generate data
� conditionally execute statements
� read data.

This chapter shows you how to construct DO loops and how to include DO loops in your
programs.

Objectives

In this chapter, you learn to
� construct a DO loop to perform repetitive calculations
� control the execution of a DO loop
� generate multiple observations in one iteration of the DATA step
� construct nested DO loops.

Constructing DO Loops

Introduction

DO loops process a group of statements repeatedly rather than once. This can greatly reduce the
number of statements required for a repetitive calculation. For example, these 12 Sum
statements compute a company's annual earnings from investments. Notice that all 12
statements are identical.

data finance.earnings;

 set finance.master;

 Earned=0;

 earned+(amount+earned)*(rate/12);

 406

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

run;

Each Sum statement accumulates the calculated interest earned for an investment for one
month. The variable Earned is created in the DATA step to store the earned interest. The
investment is compounded monthly, meaning that the value of the earned interest is cumulative.

A DO loop enables you to achieve the same results with fewer statements. In this case, the Sum
statement executes 12 times within the DO loop during each iteration of the DATA step.

data finance.earnings;

 set finance.master;

 Earned=0;

 do count=1 to 12;

 earned+(amount+earned)*(rate/12);

 end;

run;

General Form of DO Loops

To construct a DO loop, you use the DO and END statements along with other SAS statements.

General form, simple iterative DO loop:

DO index-variable=start TO stop BY increment;
SAS statements
END;

where the start, stop, and increment values
� are set upon entry into the DO loop
� cannot be changed during the processing of the DO loop
� can be numbers, variables, or SAS expressions.

The END statement terminates the loop.

Note The value of the index variable can be changed within the loop.

 407

When creating a DO loop with the iterative DO statement, you must specify an index variable .
The index variable stores the value of the current iteration of the DO loop. You can use any valid
SAS name.

DO index-variable =start TO stop BY increment;

 SAS statements

END;

Next, specify the conditions that execute the DO loop. A simple specification contains a start
value , a stop value , and an increment value for the DO loop.

DO index-variable=start TO stop BY increment;

 SAS statements

END;

The start value specifies the initial value of the index variable.

DO index-variable= start TO stop BY increment;

 SAS statements

END;

The TO clause specifies the stop value. The stop value is the last index value that executes the
DO loop.

DO index-variable=start TO stop BY increment;

 SAS statements

END;

The optional BY clause specifies an increment value for the index variable. Typically, you want
the DO loop to increment by 1 for each iteration. If you do not specify a BY clause, the default
increment value is 1.

DO index-variable=start TO stop BY increment;

 SAS statements

END;

For example, the specification below increments the index variable by 1, resulting in quiz values
of 1, 2, 3, 4, and 5:

 do quiz=1 to 5;

By contrast, the following specification increments the index variable by 2, resulting in rows
values of 2, 4, 6, 8, 10, and 12:

 do rows=2 to 12 by 2;

DO Loop Execution

Using the form of the DO loop that was just presented, let's see how the DO loop executes in the
DATA step. This example calculates how much interest was earned each month for a one-year
investment.

data finance.earnings;

 Amount=1000;

 Rate=.075/12;

 408

 do month=1 to 12;

 Earned+(amount+earned)*(rate);

 end;

run;

This DATA step does not read data from an external source. When submitted, it compiles and
then executes only once to generate data. During compilation, the program data vector is created
for the Finance.Earnings data set.

When the DATA step executes, the values of Amount and Rate are assigned.

Next, the DO loop executes. During each execution of the DO loop, the value of Earned is
calculated and is added to its previous value; then the value of month is incremented. On the
twelfth execution of the DO loop, the program data vector looks like this:

After the twelfth execution of the DO loop, the value of month is incremented to 13. Because 13
exceeds the stop value of the iterative DO statement, the DO loop stops executing, and
processing continues to the next DATA step statement. The end of the DATA step is reached, the
values are written to the Finance.Earnings data set, and in this example, the DATA step ends.
Only one observation is written to the data set.

SAS Data Set Finance.Earnings

Amount Rate month Earned

1000 0.00625 13 77.6326

Notice that the index variable month is also stored in the data set. In most cases, the index
variable is needed only for processing the DO loop and can be dropped from the data set.

Counting Iterations of DO Loops

In some cases, it is useful to create an index variable to count and store the number of iterations
in the DO loop. Then you can drop the index variable from the data set.

data work.earn (drop=counter);

 Value=2000;

 do counter =1 to 20;

 Interest=value*.075;

 409

 value+interest;

 Year+1;

 end;

run;

SAS Data Set Work.Earn

Value Interest Year

8495.70 592.723 20

The Sum statement Year+1 accumulates the number of iterations of the DO loop and stores the
total in the new variable Year . The final value of Year is then stored in the data set, whereas the
index variable counter is dropped. The data set has one observation.

Explicit OUTPUT Statements

To create an observation for each iteration of the DO loop, place an OUTPUT statement inside
the loop. By default, every DATA step contains an implicit OUTPUT statement at the end of the
step. But placing an explicit OUTPUT statement in a DATA step overrides automatic output,
causing SAS to add an observation to the data set only when the explicit OUTPUT statement is
executed.

The previous example created one observation because it used automatic output at the end of
the DATA step. In the following example, the OUTPUT statement overrides automatic output, so
the DATA step writes 20 observations.

data work.earn;

 Value=2000;

 do Year=1 to 20;

 Interest=value*.075;

 value+interest;

 output;

 end;

run;

SAS Data Set Work.Earn
(Partial Listing)

Value Year Interest

2150.00 1 150.000

2311.25 2 161.250

2484.59 3 173.344

2670.94 4 186.345

2871.26 5 200.320

3086.60 6 215.344

3318.10 7 231.495

3566.96 8 248.857

 410

SAS Data Set Work.Earn
(Partial Listing)

Value Year Interest

...

8495.70 20 592.723

Decrementing DO Loops

You can decrement a DO loop's index variable by specifying a negative value for the BY clause.
For example, the specification in this iterative DO statement decreases the index variable by 1,
resulting in values of 5, 4, 3, 2, and 1.

DO index-variable =5 to 1 by -1;

 SAS statements

END;

When you use a negative BY clause value, the start value must always be greater than the stop
value in order to decrease the index variable during each iteration.

DO index-variable =5 to 1 by -1;

 SAS statements

END;

Specifying a Series of Items

You can also specify how many times a DO loop executes by listing items in a series.

General form, DO loop with a variable list:

DO index-variable=value1, value2, value3...;
SAS statements
END;

where values can be character or numeric.

When the DO loop executes, it executes once for each item in the series. The index variable
equals the value of the current item. You must use commas to separate items in the series.

To list items in a series, you must specify either
� all numeric values

� DO index-variable =2, 5, 9, 13 , 27;

� SAS statements

END;
� all character values, with each value enclosed in quotation marks

� DO index-variable ='MON','TUE','WED','THR','FRI';

� SAS statements

END;

 411

� all variable names—the index variable takes on the values of the specified variables.

� DO index-variable =win , place , show;

� SAS statements

END;

Variable names must represent either all numeric or all character values. Do not enclose variable
names in quotation marks.

Nesting DO Loops

Iterative DO statements can be executed within a DO loop. Putting a DO loop within a DO loop is
called nesting .

do i=1 to 20;

 SAS statements

 do j=1 to 10;

 SAS statements

 end;

 SAS statements

end;

The following DATA step computes the value of a one-year investment that earns 7.5% annual
interest, compounded monthly.

data work.earn;

 Capital=2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

run;

Let's assume the same amount of capital is to be added to the investment each year for 20 years.
The new program must perform the calculation for each month during each of the 20 years. To do
this, you can include the monthly calculations within another DO loop that executes 20 times.

data work.earn;

 do year=1 to 20;

 Capital+2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

 end;

run;

During each iteration of the outside DO loop, an additional 2,000 is added to the capital, and the
nested DO loop executes 12 times.

 412

data work.earn;

 do year=1 to 20;

 Capital+2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

 end;

run;

Remember, in order for nested DO loops to execute correctly, you must
� assign a unique index-variable name in each iterative DO statement.

� data work.earn;

� do year=1 to 20;

� Capital+2000;

� do month=1 to 12;

� Interest=capital*(.075/12);

� capital+interest;

� end;

� end;

run;
� end each DO loop with an END statement.

� data work.earn;

� do year=1 to 20;

� Capital+2000;

� do month=1 to 12;

� Interest=capital*(.075/12);

� capital+interest;

� end;

� end;

run;

Note It is easier to manage nested DO loops if you indent the statements in each DO

loop as shown above.

Iteratively Processing Data That Is Read from a Dat a Set

So far you have seen examples of DATA steps that use DO loops to generate one or more
observations from one iteration of the DATA step. Now let's look at a DATA step that reads a data
set to compute the value of a new variable.

The SAS data set Finance.CDRates , shown below, contains interest rates for certificates of
deposit (CDs) that are available from several institutions.

SAS Data Set Finance.CDRates

 413

Institution Rate Years

MBNA America 0.0817 5

Metropolitan Bank 0.0814 3

Standard Pacific 0.0806 4

Suppose you want to compare how much each CD will earn at maturity with an investment of
$5,000. The DATA step below creates a new data set, Work.Compare , that contains the added
variable, Investment .

data work.compare(drop=i);

 set finance.cdrates;

 Investment=5000;

 do i=1 to years;

 investment+rate*investment;

 end;

run;

SAS Data Set Work.Compare

Institution Rate Years Investment

The index variable is used only to execute the DO loop, so it is dropped from the new data set.
Notice that the data set variable Years is used as the stop value in the iterative DO statement.
As a result, the DO loop executes the number of times that are specified by the current value of
Years . During the first iteration of the DATA step, for example, the DO loop executes five times.

During each iteration of the DATA step,
� an observation is read from Finance.CDRates
� the value 5000 is assigned to the variable Investment
� the DO loop executes, based on the current value of Years
� the value of Investment is computed (each time that the DO loop executes), using the

current value of Rate .

At the bottom of the DATA step, the first observation is written to the Work.Compare data set.
Control returns to the top of the DATA step, and the next observation is read from
Finance.CDRates . These steps are repeated for each observation in Finance.CDRates . The
resulting data set contains the computed values of Investment for all observations that have
been read from Finance.CDRates .

SAS Data Set Work.Compare

Institution Rate Years Investment

MBNA America 0.0817 5 7404.64

Metropolitan Bank 0.0814 3 6323.09

Standard Pacific 0.0806 4 6817.57

Conditionally Executing DO Loops

 414

The iterative DO statement requires that you specify the number of iterations for the DO loop.
However, there are times when you want to execute a DO loop until a condition is reached or
while a condition exists, but you don't know how many iterations are needed.

Suppose you want to calculate the number of years that are required for an investment to reach
$50,000. In the DATA step below, using an iterative DO statement is inappropriate because you
are trying to determine the number of iterations required for Capital to reach $50,000.

data work.invest;

 do year=1 to ? ;

 Capital+2000;

 capital+capital*.10;

 end;

run;

The DO WHILE and DO UNTIL statements enable you to execute DO loops based on whether a
condition is true or false.

Using the DO UNTIL Statement

The DO UNTIL statement executes a DO loop until the expression is true.

General form, DO UNTIL statement:

DO UNTIL(expression);
more SAS statements
END;

where expression is a valid SAS expression enclosed in parentheses.

The expression is not evaluated until the bottom of the loop, so a DO UNTIL loop always
executes at least once. When the expression is evaluated as true, the DO loop is not executed
again.

Assume you want to know how many years it will take to earn $50,000 if you deposit $2,000 each
year into an account that earns 10% interest. The DATA step that follows uses a DO UNTIL
statement to perform the calculation until the value is reached. Each iteration of the DO loop
represents one year of earning.

data work.invest;

 do until(Capital>=50000);

 capital+2000;

 capital+capital*.10;

 Year+1;

 end;

run;

During each iteration of the DO loop,
� 2000 is added to the value of Capital to reflect the annual deposit of $2,000

 415

� the value of Capital with 10% interest is calculated
� the value of Year is incremented by 1.

Because there is no index variable in the DO UNTIL statement, the variable Year is created in a
Sum statement to count the number of iterations of the DO loop. This program produces a data
set that contains the single observation shown below. To accumulate more than $50,000 in
capital requires 13 years (and 13 iterations of the DO loop).

SAS Data Set Work.Invest

Capital Year

53949.97 13

Using the DO WHILE Statement

Like the DO UNTIL statement, the DO WHILE statement executes DO loops conditionally. You
can use the DO WHILE statement to execute a DO loop while the expression is true.

General form, DO WHILE statement:

DO WHILE(expression);
more SAS statements
END;

where expression is a valid SAS expression enclosed in parentheses.

An important difference between the DO UNTIL and DO WHILE statements is that the DO WHILE
expression is evaluated at the top of the DO loop. If the expression is false the first time it is
evaluated, then the DO loop never executes. For example, in the following program, if the value
of Capital is less than 50,000, the DO loop does not execute.

data work.invest;

 do while(Capital>=50000);

 capital+2000;

 capital+capital*.10;

 Year+1;

 end;

run;

Using Conditional Clauses with the Iterative DO Sta tement

You have seen how the DO WHILE and DO UNTIL statements enable you to execute statements
conditionally and how the iterative DO statement enables you to execute statements a set
number of times, unconditionally.

DO WHILE(expression);

DO UNTIL(expression);

DO index-variable =start TO stop BY increment;

 416

Now let's look at a form of the iterative DO statement that combines features of both conditional
and unconditional execution of DO loops.

In this DATA step, the DO UNTIL statement determines how many years it takes (13) for an
investment to reach $50,000.

data work.invest;

 do until(Capital>=50000);

 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;

SAS Data Set Work.Invest

Capital Year

53949.97 13

Suppose you also want to limit the number of years that you invest your capital to 10 years. You
can add the UNTIL or WHILE expression to an iterative DO statement to further control the
number of iterations. This iterative DO statement enables you to execute the DO loop until
Capital is greater than or equal to 50000 or until the DO loop executes 10 times, whichever
occurs first.

data work.invest(drop=i);

 do i=1 to 10 until(Capital>=50000);

 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;

SAS Data Set Work.Invest

Capital Year

35062.33 10

In this case, the DO loop stops executing after 10 iterations, and the value of Capital never
reaches 50000. If you increase the amount added to Capital each year to 4000, the DO loop
stops executing after the eighth iteration when the value of Capital exceeds 50000.

data work.invest(drop=i);

 do i=1 to 10 until(Capital>=50000);

 Year+1;

 capital+4000;

 capital+capital*.10;

 end;

run;

SAS Data Set Work.Invest

 417

Capital Year

50317.91 8

The UNTIL and WHILE specifications in an iterative DO statement function similarly to the DO
UNTIL and DO WHILE statements. Both statements require a valid SAS expression enclosed in
parentheses.

 UNTIL(expression);

 DO index-variable =start TO stop BY increment WHILE(expression);

The UNTIL expression is evaluated at the bottom of the DO loop, so the DO loop always
executes at least once. The WHILE expression is evaluated before the execution of the DO loop.
So, if the condition is not true, the DO loop never executes.

Creating Samples

Because it performs iterative processing, a DO loop provides an easy way to draw sample
observations from a data set. For example, suppose you would like to sample every tenth
observation of the 5,000 observations in Factory.Widgets . Start with a simple DATA step:

data work.subset;

 set factory.widgets;

run;

You can create the sample data set by enclosing the SET statement in a DO loop. Use the start,
stop, and increment values to select every tenth observation of the 5,000. Add the POINT= option
to the SET statement, setting the POINT= option equal to the index variable that is used in the
DO loop. (You learned about the POINT= option in Chapter 12, Reading SAS Data Sets .)

data work.subset;

 do sample=10 to 5000 by 10;

 set factory.widgets point=sample;

 end;

run;

Remember that, in order to prevent continuous DATA step looping, you need to add a STOP
statement when using the POINT= option. Then, because the STOP statement prevents the
output of observations at the end of the DATA step, you also need to add an OUTPUT statement.
Place the statement inside the DO loop in order to output each observation that is selected. (If the
OUTPUT statement were placed after the DO loop, only the last observation would be written.)

data work.subset;

 do sample=10 to 5000 by 10;

 set factory.widgets point=sample;

 output;

 end;

 stop;

run;

When the program runs, the DATA step reads the observations that are identified by the POINT=
option in Factory.Widgets . The values of the POINT= option are provided by the DO loop, which

 418

starts at 10 and goes to 5,000 in increments of 10. The data set Work.Subset contains 500
observations.

Summary

Text Summary

Purpose of DO Loops

DO loops process groups of SAS statements repeatedly, reducing the number of statements that
are required in repetitive calculations.

Syntax of Iterative DO Loops

To construct an iterative DO loop, specify an index variable and the conditions that will execute
the loop. These conditions include a start value for the index variable, a stop value, and an
increment value. Start, stop, and increment values can be any number, numeric variable, or SAS
expression that results in a number.

DO Loop Execution

During each iteration of a DO loop, new values are created in the SAS program data vector.
When the loop's index value exceeds the stop value, the DO loop stops, and processing
continues with the following DATA step statement.

Counting DO Loop Iterations

A simple way to track DO loop iterations is to create a temporary counting variable, then drop this
variable from the data set. Or, include an OUTPUT statement within the DO loop to write an
observation for each iteration. This overrides the automatic generation of output at the end of the
DATA step.

Decrementing DO Loops

You can decrement a DO loop by specifying a negative value for the BY clause. The start value
must be greater than the stop value.

Specifying a Series of Items

You can specify how many times a DO loop executes by listing items in a series; the DO loop will
execute once for each item, with the index variable equal to the value of each item. A series can
consist of all numeric values, all character values (enclosed in quotation marks), or all variable
names (without quotation marks).

Nesting DO Loops

DO loops can run within DO loops, as long as you assign a unique index variable to each loop
and terminate each DO loop with its own END statement.

 419

Iteratively Processing Data That Is Read from a Dat a Set

You can use a DO loop to read a data set and compute the value of a new variable. DO loop start
and stop values, for example, can be read from a data set.

Conditionally Executing DO Loops

The DO UNTIL statement executes a DO loop until a condition is true. Because the expression is
not evaluated until the bottom of the loop, a DO UNTIL loop will execute at least once. The DO
WHILE statement is used to execute a DO loop while a condition is true. Because the DO WHILE
statement is evaluated at the top of the DO loop, if the expression is false the first time it is
evaluated, then the DO loop never executes.

Using Conditional Clauses within Iterative DO State ments

DO WHILE and DO UNTIL statements can be used within iterative DO loops to combine
conditional and unconditional execution.

Creating Samples

DO loops provide an easy way to create samples from other data sets. Enclose the SET
statement in a DO loop, using the start, stop, and increment values to select the observations.
Add the POINT= option to the SET statement, setting it equal to the index variable of the DO
loop. Then add a STOP statement to prevent DATA step looping, and add an OUTPUT statement
to write DATA step output.

Points to Remember
� If you do not specify a BY clause, then the increment value for DO loops is 1.
� In most cases, the index variable is needed only for processing the DO loop and can be

dropped from the data set.
� The index variable is always incremented by one value beyond the stop value unless you

terminate the DO loop in some other manner.
� It's easier to manage nested DO loops if you indent the statements in each loop.
� In order for nested DO loops to execute correctly, you must

o assign a unique index-variable name in each iterative DO statement
o end each DO loop with an END statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which statement is false regarding the use of DO lo ops?
a. They can contain conditional clauses.
b. They can generate multiple observations.
c. They can be used to combine DATA and PROC steps.
d. They can be used to read data.

2. During each execution of the following DO loop, the value of Earned is
calculated and is added to its previous value. How many times does this DO
loop execute?

data finance.earnings;

 420

 Amount=1000;

 Rate=.075/12;

 do month=1 to 12;

 Earned+(amount+earned)*rate;

 end;

run;
a. 0
b. 1
c. 12
d. 13

3. On January 1 of each year, $5,000 is invested in an account. Complete the DATA
step below to determine the value of the account af ter 15 years if a constant
interest rate of 10% is expected.

data work.invest;

 ...

 Capital+5000;

 capital+(capital*.10);

 end;

run;
a. do count=1 to 15;
b. do count=1 to 15 by 10%;
c. do count=1 to capital;
d. do count=capital to (capital*.10);

4. In the data set Work.Invest, what would be the stor ed value for Year ?

data work.invest;

 do year=1990 to 2004;

 Capital+5000;

 capital+(capital*.10);

 end;

run;
a. missing
b. 1990
c. 2004
d. 2005

5. Which of the following statements is false regarding the program shown below?

data work.invest;

 do year=1990 to 2004;

 Capital+5000;

 capital+(capital*.10);

 output;

 end;

run;

 421

a. The OUTPUT statement writes current values to th e data set
immediately.

b. The stored value for Year is 2005.
c. The OUTPUT statement overrides the automatic out put at the end of the

DATA step.
d. The DO loop performs 15 iterations.

6. How many observations will the data set Work.Earn c ontain?

data work.earn;

 Value=2000;

 do year=1 to 20;

 Interest=value*.075;

 value+interest;

 output;

 end;

run;
a. 0
b. 1
c. 19
d. 20

7. Which of the following would you use to compare the result of investing $4,000
a year for five years in three different banks that compound interest monthly?
Assume a fixed rate for the five-year period.

a. DO WHILE statement
b. nested DO loops
c. DO UNTIL statement
d. a DO group

8. Which statement is false regarding DO UNTIL stateme nts?
a. The condition is evaluated at the top of the loo p, before the enclosed

statements are executed.
b. The enclosed statements are always executed at l east once.
c. SAS statements in the DO loop are executed until the specified

condition is true.
d. The DO loop must have a closing END statement.

9. Select the DO WHILE statement that would generate t he same result as the
program below.

data work.invest;

capital=100000;

 do until(Capital gt 500000);

 Year+1;

 capital+(capital*.10);

 end;

run;
a. do while(Capital ge 500000);
b. do while(Capital=500000);
c. do while(Capital le 500000);

 422

d. do while(Capital<500000);

10. In the following program, complete the statement so that the program stops
generating observations when Distance reaches 250 miles or when 10 gallons
of fuel have been used.

data work.go250;

 set perm.cars;

 do gallons=1 to 10 ... ;

 Distance=gallons*mpg;

 output;

 end;

run;
a. while(Distance<250)
b. when(Distance>250)
c. over(Distance le 250)
d. until(Distance=250)

Answers

1. Correct answer: c

DO loops are DATA step statements and cannot be used in conjunction with PROC steps.

2. Correct answer: c

The number of iterations is determined by the DO statement’s stop value, which in this case
is 12.

3. Correct answer: a

Use a DO loop to perform repetitive calculations starting at 1 and looping 15 times.

4. Correct answer: d

At the end of the fifteenth iteration of the DO loop, the value for Year is incremented to 2005.
Because this value exceeds the stop value, the DO loop ends. At the bottom of the DATA
step, the current values are written to the data set.

5. Correct answer: b

The OUTPUT statement overrides the automatic output at the end of the DATA step. On the
last iteration of the DO loop, the value of Year , 2004, is written to the data set.

6. Correct answer: d

The number of observations is based on the number of times the OUTPUT statement
executes. The new data set has 20 observations, one for each iteration of the DO loop.

7. Correct answer: b

Place the monthly calculation in a DO loop within a DO loop that iterates once for each year.

 423

The DO WHILE and DO UNTIL statements are not used here because the number of
required iterations is fixed. A non-iterative DO group would not be useful.

8. Correct answer: a

The DO UNTIL condition is evaluated at the bottom of the loop, so the enclosed statements
are always executed at least once.

9. Correct answer: c

Because the DO WHILE loop is evaluated at the top of the loop, you specify the condition
that must exist in order to execute the enclosed statements.

10. Correct answer: a

The WHILE expression causes the DO loop to stop executing when the value of Distance
becomes equal to or greater than 250.

 424

Chapter 16: Processing Variables with Arrays

Overview

Introduction

In DATA step programming, you often need to perform the same action on more than one
variable. Although you can process variables individually, it is easier to handle them as a group.
You can do this by using array processing.

For example, using an array and DO loop, the program below eliminates the need for 365
separate programming statements to convert the daily temperature from Fahrenheit to Celsius for
the year.

data work.report (drop=i);

 set master.temps;

 array daytemp{365} day1-day365;

 do i=1 to 365;

 daytemp{i}=5*(daytemp{i}-32)/9;

 end;

run;

You can use arrays to simplify the code needed to
� perform repetitive calculations
� create many variables that have the same attributes
� read data
� rotate SAS data sets by changing variables to observations or observations to variables
� compare variables
� perform a table lookup.

This chapter teaches you how to define an array and how to reference elements of the array in
the DATA step.

Objectives

In this chapter, you learn to
� group variables into one- and two-dimensional arrays
� perform an action on array elements
� create new variables with an ARRAY statement
� assign initial values to array elements
� create temporary array elements with an ARRAY statement.

Creating One-Dimensional Arrays

Understanding SAS Arrays

A SAS array is a temporary grouping of SAS variables under a single name. An array exists only
for the duration of the DATA step.

 425

One reason for using an array is to reduce the number of statements that are required for
processing variables. For example, in the DATA step below, the values of seven data set
variables are converted from Fahrenheit to Celsius temperatures.

data work.report;

 set master.temps;

 mon =5*(mon-32)/9;

 tue =5*(tue -32)/9;

 wed =5*(wed-32)/9;

 thr =5*(thr -32)/9;

 fri =5*(fri -32)/9;

 sat =5*(sat -32)/9;

 sun =5*(sun -32)/9;

run;

As you can see, the assignment statements perform the same calculation on each variable in this
series of statements. Only the name of the variable changes in each statement.

By grouping the variables into a one-dimensional array, you can process the variables in a DO
loop. You use fewer statements, and the DATA step program is more easily modified or
corrected.

data work.report(drop=i);

 set master.temps;

 array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;

 wkday{i} =5*(wkday{i} -32)/9;

 end;

run;

You will learn other uses for arrays in this chapter.

General Form of an Array

To group previously defined data set variables into an array, use an ARRAY statement.

General form, ARRAY statement:

ARRAY array-name{dimension} <elements>;

where
� array-name specifies the name of the array.
� dimension describes the number and arrangement of array elements. The default

dimension is one.

 426

� elements lists the variables to include in the array. Array elements must be either all
numeric or all character. If no elements are listed, new variables will be created with default
names.

Warning Do not give an array the same name as a variable in the same DATA step.

Also, avoid using the name of a SAS function; the array will be correct, but
you won't be able to use the function in the same DATA step, and a
warning message will appear in the SAS log.

Warning You cannot use array names in LABEL, FORMAT, DROP, KEEP, or

LENGTH statements. Arrays exist only for the duration of the DATA step.
They do not become part of the output data set.

For example, in the data set Finance.Sales91 , you might want to process the variables Qtr1 ,
Qtr2 , Qtr3 , and Qtr4 in the same way.

Description of Finance.Sales91

Variable Type Length

SalesRep char 8

Qtr1 num 8

Qtr2 num 8

Qtr3 num 8

Qtr4 num 8

Specifying the Array Name

To group the variables in the array, first give the array a name . In this example, make the array
name sales .

 array sales {4} qtr1 qtr2 qtr3 qtr4;

Specifying the Dimension

Following the array name, you must specify the dimension of the array. The dimension describes
the number and arrangement of elements in the array. There are several ways to specify the
dimension.
� In a one-dimensional array, you can simply specify the number of array elements. The

array elements are the existing variables that you want to reference and process elsewhere
in the DATA step.

� array sales {4} qtr1 qtr2 qtr3 qtr4;
� The dimension of an array doesn't have to be the number of array elements. You can

specify a range of values for the dimension when you define the array. For example, you can
define the array sales as follows:

array sales {96:99} totals96 totals97 totals98 totals99;
� You can also indicate the dimension of a one-dimensional array by using an asterisk (*).

This way, SAS determines the dimension of the array by counting the number of elements.

array sales {*} qtr1 qtr2 qtr3 qtr4;
� Enclose the dimension in either parentheses, braces, or brackets.

� ()

� array sales {4} qtr1 qtr2 qtr3 qtr4;

 427

� []

Specifying Array Elements

When specifying the elements of an array, you can list each variable name that you want to
include in the array. When listing elements, separate each element with a space. As with all SAS
statements, you end the ARRAY statement with a semicolon (;).

 array sales{4} qtr1 qtr2 qtr3 qtr4;

You can also specify array elements as a variable list . Here is an example of an ARRAY
statement that groups the variables Qtr1 through Qtr4 into a one-dimensional array, using a
variable list.

 array sales{4} qtr1-qtr4;

Let's look more closely at array elements that are specified as variable lists.

Variable Lists as Array Elements

You can specify variable lists in the forms shown below. Each type of variable list is explained in
more detail following the table.

Variables Form

a numbered range of variables Var1-Varn

all numeric variables _NUMERIC_

all character variables _CHARACTER_

all variables _ALL_

Specifying a Numbered Range of Variables

Qtr1 Qtr2 Qtr3 Qtr4 →→→→ Qtr1-Qtr4

When specifying a numbered range of variables,
� the variables must have the same name except for the last character or characters
� the last character of each variable must be numeric
� the variables must be numbered consecutively.

array sales{4} qtr1-qtr4;

In the preceding example, you would use sales{4} to reference Qtr4 . However, the index of an
array doesn't have to range from one to the number of array elements. You can specify a range
of values for the index when you define the array. For example, you can define the array sales
as follows:

array sales{96:99} totals96-totals99;

Specifying All Numeric Variables
Amount Rate Term → → → → _NUMERIC_

NUMERIC specifies all numeric variables that have already been defined in the current DATA
step.

array sales{*} _numeric_;

 428

Specifying All Character Variables
FrstName LastName Address → → → → _CHARACTER_

CHARACTER specifies all character variables that have already been defined in the current
DATA step.

array sales{*} _character_;

Specifying All Variables
FrstName LastName Address Amount Rate Term → → → → _ALL_

ALL specifies all variables of the same type (all character or all numeric) that have been
defined in the current DATA step.

array sales{*} _all_;

Referencing Elements of an Array

Now let's look at some ways you can use arrays to process variables in the DATA step.

data work.report(drop=i);

 set master.temps;

 array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;

 if wkday{i}>95 then output;

 end;

run;

data work.weights(drop=i);

 set master.class;

 array wt{6} w1-w6;

 do i=1 to 6;

 wt{i}=wt{i}*2.2;

 end;

run;

data work.new(drop=i);

 set master.synyms;

 array term{9} also1-also9;

 do i=1 to 9;

 if term{i} ne ' ' then output;

 end;

run;

 429

The ability to reference the elements of an array by an index value is what gives arrays their
power. Typically, arrays are used with DO loops to process multiple variables and to perform
repetitive calculations.

array quarter{4} jan apr jul oct;

do i =1 to 4;

 YearGoal=quarter{i}*1.2;

end;

When you define an array in a DATA step, an index value is assigned to each array element. The
index values are assigned in the order of the array elements.

 1 2 3 4

array quarter{4} jan apr jul oct;

do i=1 to 4;

 YearGoal=quarter{i}*1.2;

end;

You use an array reference to perform an action on an array element during execution. To
reference an array element in the DATA step, specify the name of the array, followed by an index
value enclosed in brackets.

General form, ARRAY reference:

array-name{index value}

where index value
� is enclosed in parentheses, braces, or brackets
� specifies an integer, a numeric variable, or a SAS numeric expression
� is within the lower and upper bounds of the dimension of the array.

When used in a DO loop, the index variable of the iterative DO statement can reference each
element of the array.

array quarter {4} jan apr jul oct;

do i=1 to 4;

 YearGoal= qtr{i} *1.2;

end;

For example, the DO loop above increments the index variable i from the lower bound of the
quarter array, 1, to the upper bound, 4. The following sequence illustrates this process:

 1

 array quarter{4} jan apr jul oct;

 do i=1 to 4;

 YearGoal=quarter{ 1}*1.2;

 end;

 2

 430

 array quarter{4} jan apr jul oct;

 do i=1 to 4;

 YearGoal=quarter{ 2}*1.2;

 end;

 3

 array quarter{4} jan apr jul oct;

 do i=1 to 4;

 YearGoal=quarter{ 3}*1.2;

 end;

 4

 array quarter{4} jan apr jul oct;

 do i=1 to 4;

 YearGoal=quarter{ 4}*1.2;

 end;

During each iteration of the DO loop, quarter{i} refers to an element of the array quarter in
the order listed.

Compilation and Execution

Let's look at another example of a DATA step that contains an array with a DO loop.

The Health Center of a company conducts a fitness class for its employees. Each week,
participants are weighed so that they can monitor their progress. The weight data, currently
stored in kilograms, needs to be converted to pounds.

SAS Data Set Hrd.Fitclass

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 69.6 68.9 68.8 67.4 66.0 66.2

Betsy 52.6 52.6 51.7 50.4 49.8 49.1

Brenda 68.6 67.6 67.0 66.4 65.8 65.2

Carl 67.6 66.6 66.0 65.4 64.8 64.2

Carmela 63.6 62.5 61.9 61.4 60.8 58.2

David 70.6 69.8 69.2 68.4 67.8 67.0

You can use a DO loop to update the variables Weight1 through Weight6 for each observation
in the Hrd.Fitclass data set.

data hrd.convert;

 set hrd.fitclass;

 array wt{6} weight1-weight6;

 do i=1 to 6;

 431

 wt{i}=wt{i}*2.2046;

 end;

run;

Note The wt{ i } that appears on the right side of the equal sign (=) is an array

reference, not a variable name, so it does not violate the rule against having
the same variable and array name in a DATA step.

To understand how the DO loop processes the array elements, let's examine the compilation and
execution phases of this DATA step.

During compilation, the program data vector is created for the Hrd.Convert data set.

The DATA step is scanned for syntax errors. If there are any syntax errors in the ARRAY
statement, they are detected at this time.

The index values of the array elements are assigned. Note that the array name and the array
references are not included in the program data vector. The array name and array references
exist only for the duration of the DATA step.

During the first iteration of the DATA step, the first observation in Hrd.Fitclass is read into the
program data vector.

data hrd.convert;

 set hrd.fitclass;

 array wt{6} weight1-weight6;

 do i=1 to 6;

 wt{i}=wt{i} *2.2046;

 end;

run;

Because the ARRAY statement is a compile-time only statement, it is ignored during execution.
The DO loop is executed next.

During the first iteration of the DO loop, the index variable i is set to 1. As a result, the array
reference wt{ i} becomes wt{ 1} . Because wt{ 1} refers to the first array element, Weight1 ,
the value of Weight1 is converted from kilograms to pounds.

data hrd.convert;

 set hrd.fitclass;

 array wt{6} weight1-weight6;

 do i=1 to 6;

 wt{i}=wt{i}*2.2046;

 end;

run;

 432

As the DATA step continues its DO loop iterations, the index variable i is changed from 1 to 2, 3,
4, 5, and 6, causing Weight2 through Weight6 to receive new values in the program data
vector, as shown below.

Using the DIM Function in an Iterative DO Statement

You can also use the DIM function to return the number of elements in the array. When using DO
loops to process arrays, you can use the DIM function in the TO clause of the iterative DO
statement. For a one-dimensional array, specify the array name as the argument for the DIM
function.

General form, DIM function:

DIM(array-name)

where array-name specifies the array.

In this example, dim(wt) returns a value of 6.

data hrd.convert;

 set hrd.fitclass;

 array wt{*} weight1-weight6;

 do i=1 to dim(wt);

 wt{i}=wt{i}*2.2046;

 end;

run;

When you use the DIM function, you do not have to re-specify the stop value of an iterative DO
statement if you change the dimension of the array.

data hrd.convert; data hrd.convert;

 set hrd.fitclass; set hrd.fitclas s;

 array wt{*} weight1-weight 6; array wt{*} weight1-weight 10;

 do i=1 to dim(wt); do i=1 to dim(wt) ;

 wt{i}=wt(i)*2.2046; wt{i}=wt{i}* 2.2046;

 end; end;

 433

run; run;

Expanding Your Use of Arrays

Creating Variables in an ARRAY Statement

So far you have learned several ways to reference existing variables in an ARRAY statement.
You can also create variables in an ARRAY statement by omitting the array elements from the
statement. Because you are not referencing existing variables, SAS automatically creates the
variables for you and assigns default names to them.

General form, ARRAY statement to create new variabl es:

ARRAY array-name{dimension};

where
� array-name specifies the name of the array.
� dimension describes the number and arrangement of array elements. The default

dimension is 1.

For example, suppose you need to calculate the weight gain or loss from week to week for each
member of a fitness class, as shown below.

SAS Data Set Hrd.Convert

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 153.4 151.9 151.7 148.6 145.5 145.9

Betsy 116.0 116.0 114.0 111.1 109.8 108.2

Brenda 151.2 149.0 147.7 146.4 145.1 143.7

Carl 149.0 146.8 145.5 144.2 142.9 141.5

Carmela 140.2 137.8 136.5 135.4 134.0 128.3

You'd like to create variables that contain this weekly difference. To perform the calculation, you
first group the variables Weight1 through Weight6 into an array.

data hrd.diff;

 set hrd.convert;

 array wt{6} weight1-weight6;

Next, you want to create the new variables to store the differences between the six recorded
weights. You can use an additional ARRAY statement without elements to create the new
variables.

data hrd.diff;

 set hrd.convert;

 array wt{6} weight1-weight6;

 array WgtDiff{5};

SAS Data Set Hrd.Convert

 434

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 153.4 <-1-
>151.9

<-2-
>151.7

<-3-
>148.6

<-4-
>145.5

<-5-
>145.9

Betsy 116.0 116.0 114.0 111.1 109.8 108.2

Brenda 151.2 149.0 147.7 146.4 145.1 143.7

Carl 149.0 146.8 145.5 144.2 142.9 141.5

Carmela 140.2 137.8 136.5 135.4 134.0 128.3

Remember, when creating variables in an ARRAY statement, you do not need to specify array
elements as long as you specify how many elements will be in the array.

 array WgtDiff{5};

Creating Default Variable Names

SAS creates default variable names by concatenating the array name and the numbers 1, 2, 3,
and so on, up to the array dimension.

 array WgtDiff{ 5};

 WgtDiff1 WgtDiff2 WgtDiff3 WgtDiff4 WgtDif f5

Note If you prefer, you can specify individual variable names. To specify variable

names, you list each name as an element of the array. The following ARRAY
statement creates the numeric variables Oct12 , Oct19 , Oct26 , Nov02 , and
Nov09 .

array WgtDiff{5} Oct12 Oct19 Oct26 Nov02 Nov09;

 array WgtDiff{ 5};

 Oct12 Oct19 Oct26 Nov02 Nov09

Creating Arrays of Character Variables

To create an array of character variables, add a dollar sign ($) after the array dimension.

 435

 array firstname{5} $;

By default, all character variables that are created in an ARRAY statement are assigned a length
of 8. You can assign your own length by specifying the length after the dollar sign.

 array firstname{5} $ 24;

The length that you specify is automatically assigned to all variables that are created by the
ARRAY statement.

Using an ARRAY Statement with an Iterative DO State ment

During the compilation of the DATA step, the variables that this ARRAY statement creates are
added to the program data vector and are stored in the resulting data set.

data hrd.diff;

 set hrd.convert;

 array wt{6} Weight1-Weight6;

 array WgtDiff{5};

Warning When referencing the array elements, be careful not to confuse the array

references WgtDiff{1} through WgtDiff{5} (note the braces) with the
variable names WgtDiff1 through WgtDiff5 . The program data vector
below shows the relationship between the array references and the
corresponding variable names.

Now you can use a DO loop to calculate the differences between each of the recorded weights.
Notice that each value of WgtDiff{ i } is calculated by subtracting wt{ i } from wt(i +1) . By
manipulating the index variable, you can easily reference any array element.

data hrd.diff;

 set hrd.convert;

 array wt{6} weight1-weight6;

 array WgtDiff{5};

 do i=1 to 5;

 wgtdiff{i}=wt{i+1}-wt{i};

 end;

run;

A portion of the resulting data set is shown below.

SAS Data Set Hrd.Diff

 436

Name WgtDiff1 WgtDiff2 WgtDiff3 WgtDiff4 WgtDiff5

Alicia -1.54322 -0.22046 -3.08644 -3.08644 0.44092

Betsy 0.00000 -1.98414 -2.86598 -1.32276 -1.54322

Brenda -2.20460 -1.32276 -1.32276 -1.32276 -1.32276

Assigning Initial Values to Arrays

Sometimes it is useful to assign initial values to elements of an array when you define the array.

 array goal{4} g1 g2 g3 g4 (initial values);

Here is an example:

 array goal{4} g1 g2 g3 g4 (9000 9300 9600 9900);

To assign initial values in an ARRAY statement,
� place the values after the array elements
� specify one initial value for each corresponding array element
� separate each value with a comma or blank
� enclose the initial values in parentheses.

Enclose each character value in quotation marks.

 array col{3} $ color1-color3 ('red','green','blue');

It's also possible to assign initial values to an array without specifying each array element. The
following statement creates the variables Var1 , Var2 , Var3 , and Var4 , and assigns them initial
values of 1, 2, 3, and 4:

 array Var{4} (1 2 3 4);

For this example, assume that you have the task of comparing the actual sales figures in the
Finance.Qsales data set to the sales goals for each sales representative at the beginning of the
year. The sales goals are not recorded in Finance.Qsales .

Description of Finance.Qsales

Variable Type Length

SalesRep char 8

Sales1 num 8

Sales2 num 8

Sales3 num 8

Sales4 num 8

The DATA step below reads the Finance.Qsales data set to create the Finance.Report data set.
The ARRAY statement creates an array to process sales data for each quarter.

data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 437

To compare the actual sales to the sales goals, you must create the variables for the sales goals
and assign values to them.

data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 array Goal{4} (9000 9300 9600 9900);

A third ARRAY statement creates the variables Achieved1 through Achieved4 to store the
comparison of actual sales versus sales goals.

data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 array Goal{4} (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

run;

A DO loop executes four times to calculate the value of each element of the achieved array
(expressed as a percentage).

data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 array Goal{4} (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

run;

Before submitting this DATA step, you can drop the index variable from the new data set by
adding a DROP= option to the DATA statement.

data finance.report (drop=i);

 set finance.qsales;

 array sale{4} sales1-sales4;

 array Goal{4} (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

run;

 438

This is an example of a simple table-lookup program. The resulting data set contains the
variables that were read from Finance.Qsales , plus the eight variables that were created with
ARRAY statements.
SAS Data Set Finance.Report

SalesRep Sales1 Sales2 Sales3 Sales4 Goal1 Goal2

Britt 8400 8800 9300 9800 9000 9300

Fruchten 9500 9300 9800 8900 9000 9300

Goodyear 9150 9200 9650 11000 9000 9300

Goal3 Goal4 Achieved1 Achieved2 Achieved3 Achieved4

9600 9900 93.333 94.624 96.875 98.990

9600 9900 105.556 100.000 102.083 89.899

9600 9900 101.667 98.925 100.521 111.111

Note Variables to which initial values are assigned in an ARRAY

statement are automatically retained.

The variables Goal1 through Goal4 should not be stored in the data set, because they are
needed only to calculate the values of Achieved1 through Achieved4 . The next example
shows you how to create temporary array elements.

Creating Temporary Array Elements

To create temporary array elements for DATA step processing without creating new variables,
specify _TEMPORARY_ after the array name and dimension.

data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 array goal{4} _temporary_ (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

run;

Temporary array elements do not appear in the resulting data set.

SAS Data Set Finance.Report

SalesRep Sales1 Sales2 Sales3 Sales4

Britt 8400 8800 9300 9800

Fruchten 9500 9300 9800 8900

Goodyear 9150 9200 9650 11000

Achieved1 Achieved2 Achieved3 Achieved4

 439

Achieved1 Achieved2 Achieved3 Achieved4

93.333 94.624 96.875 98.990

105.556 100.000 102.083 89.899

101.667 98.925 100.521 111.111

Temporary array elements are useful when the array is needed only to perform a calculation. You
can improve performance time by using temporary array elements.

Understanding Multidimensional Arrays

So far you have learned how to group variables into one-dimensional arrays. You can also group
variables into table-like structures called multidimensional arrays. This section teaches you how
to define and use two-dimensional arrays, which are a common type of multidimensional array.

Suppose you want to write a DATA step to compare responses on a quiz to the correct answers.
As long as there is only one correct answer per question, this is a simple one-to-one comparison.

Resp1 → Answer1

Resp2 → Answer2

Resp3 → Answer3

Resp4 → Answer4

However, if there is more than one correct answer per question, you must compare each
response to each possible correct answer in order to determine whether there is a match.

Resp1 → Answer1 Answer2 Answer3

Resp2 → Answer4 Answer5 Answer6

Resp3 → Answer7 Answer8 Answer9

Resp4 → Answer10 Answer11 Answer12

You can process the above data more easily by grouping the Answer variables into a two-
dimensional array. Think of a one-dimensional array as a single row of variables, as in this
example:

 Answer1 Answer2 Answer3 Answer4 ... Answer9 Answer 10 Answer11 Answer12

And think of a two-dimensional array as multiple rows of variables , as in this example:

Answer1 Answer2 Answer3

Answer4 Answer5 Answer6

Answer7 Answer8 Answer9

Answer10 Answer11 Answer12

Defining a Multidimensional Array

To define a multidimensional array, you specify the number of elements in each dimension,
separated by a comma. This ARRAY statement defines a two-dimensional array:

 440

 array new{3,4} x1-x12;

In a two-dimensional array, the two dimensions can be thought of as a table of rows and columns.

 array new{ r , c } x1-x12;

The first dimension in the ARRAY statement specifies the number of rows.

 array new{ 3,4} x1-x12;

The second dimension specifies the number of columns.

 array new{3, 4} x1-x12;

You can reference any element of the array by specifying the two dimensions. In the example
below, you can perform an action on the variable x7 by specifying the array reference new{2,3} .
You can easily locate the array element in the table by finding the row (2), then the column (3).

array new{3,4} x1-x12;

new{2,3}=0;

When you define a two-dimensional array, the array elements are grouped in the order in which
they are listed in the ARRAY statement. For example, the array elements x1 through x4 can be
thought of as the first row of the table.

 array new{3,4} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

The elements x5 through x8 become the second row of the table, and so on.

 array new{3,4} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

 441

Example: Referencing Elements of a Two-Dimensional Array

Multidimensional arrays are typically used with nested DO loops . The next example uses a one-
dimensional array, a two-dimensional array, and a nested DO loop to restructure a set of
variables.

Your company's sales figures are stored by month in the SAS data set Finance.Monthly . Your
task is to generate a new data set of quarterly sales rather than monthly sales.

Description of Finance.Monthly

Variable Type Length

Year num 8

Month1 num 8

Month2 num 8

Month3 num 8

Month4 num 8

Month5 num 8

Month6 num 8

Month7 num 8

Month8 num 8

Month9 num 8

Month10 num 8

Month11 num 8

Month12 num 8

Defining the array m{4,3} puts the variables Month1 through Month12 into four groups of three
months (yearly quarters).
Table Representation: of m Array

Month1 Month2 Month3

Month4 Month5 Month6

Month7 Month8 Month9

Month10 Month11 Month12

data finance.quarters;

 set finance.monthly;

 442

 array m{4,3} month1-month12;

Defining the array Qtr{4} creates the numeric variables Qtr1 , Qtr2 , Qtr3 , Qtr4 , which will
be used to sum the sales for each quarter.

data finance.quarters;

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

A nested DO loop is used to reference the values of the variables Month1 through Month12 and
to calculate the values of Qtr1 through Qtr4 . Because the variables i and j are used only for
loop processing, the DROP= option is used to exclude them from the Finance.Quarters data set.

data finance.quarters (drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

Each element in the Qtr array represents the sum of one row in the m array. The number of
elements in the Qtr array should match the first dimension of the m array (that is, the number of
rows in the m array). The first DO loop executes once for each of the four elements of the Qtr
array.

The assignment statement, qtr{i}=0 , sets the value of qtr{i} to zero after each iteration of
the first DO loop. Without the assignment statement, the values of Qtr1 , Qtr2 , Qtr3 , and
Qtr4 would accumulate across iterations of the DATA step due to the qtr{i}+m{i,j} Sum
statement within the DO loop.

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{ 4,3} month1-month12;

 array Qtr{ 4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

 443

The second DO loop executes the same number of times as the second dimension of the m array
(that is, the number of columns in each row of the m array).

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4, 3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

To see how the nested DO loop processes these arrays, let's examine the execution of this DATA
step.

When this DATA step is compiled, the program data vector is created. The PDV contains the
variables Year , Month1 through Month12 , and the new variables Qtr1 through Qtr4 . (Only
the beginning and ending portions of the program data vector are represented here.)

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

During the first execution of the DATA step, the values of the first observation of
Finance.Monthly are read into the program data vector. When the first DO loop executes the first
time, the index variable i is set to 1.

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 > do i =1 to 4; i=1

 qtr{i}=0;

 444

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

During the first iteration of the nested DO loop, the value of Month1 , which is referenced by
m{i,j} , is added to Qtr1 .

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4; i=1

 qtr{i}=0;

 > do j=1 to 3; j=1

 qtr{ 1}+m{ 1, 1};

 end;

 end;

run;

During the second iteration of the nested DO loop, the value of Month2 , which is referenced by m
{i,j} , is added to Qtr1 .

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4; i=1

 qtr{i}=0;

 > do j=1 to 3; j=2

 qtr{ 1}+m{ 1, 2};

 end;

 end;

run;

 445

The nested DO loop continues to execute until the index variable j exceeds the stop value, 3.
When the nested DO loop completes execution, the total sales for the first quarter, Qtr1 , have
been computed.

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4; i=1

 qtr{i}=0;

 > do j=1 to 3; j=3

 qtr{ 1}+m{ 1, 3};

 end;

 end;

run;

The outer DO loop increments i to 2, and the process continues for the array element Qtr2 and
the m array elements Month4 through Month6 .

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

> do i=1 to 4; i=2

 qtr{i}=0;

 do j=1 to 3; j=1

 qtr{i}+m{i,j};

 end;

 end;

run;

After the outer DO loop completes execution, the end of the DATA step is reached, and the
variable values for the first observation are written to the data set Finance.Quarters .

data finance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

> do i=1 to 4; i=5 (loop ends)

 qtr{i}=0;

 do j=1 to 3;

 446

 qtr{i}+m{i,j};

 end;

 end;

run;

What you have seen so far represents the first iteration of the DATA step. All observations in the
data set Finance.Monthly are processed in the same manner. Below is a portion of the resulting
data set, which contains the sales figures grouped by quarters.
SAS Data Set Finance.Quarters (Partial Listing)

Year Qtr1 Qtr2 Qtr3 Qtr4

1989 69100 64400 69200 71800

1990 73100 72000 83200 82800

1991 73400 81800 85200 87800

Additional Features

You've seen a number of uses for arrays, including creating variables, performing repetitive
calculations, and performing table lookups. You can also use arrays for rotating (transposing) a
SAS data set.

When you rotate a SAS data set, you change variables to observations or observations to
variables. For example, suppose you want to rotate the Finance.Funddrive data set to create
four output observations from each input observation.

SAS Data Set Finance.Funddrive

LastName Qtr1 Qtr2 Qtr3 Qtr4

ADAMS 18 18 20 20

ALEXANDE 15 18 15 10

APPLE 25 25 25 25

ARTHUR 10 25 20 30

AVERY 15 15 15 15

BAREFOOT 20 20 20 20

BAUCOM 25 20 20 30

BLAIR 10 10 5 10

BLALOCK 5 10 10 15

BOSTIC 20 25 30 25

BRADLEY 12 16 14 18

BRADY 20 20 20 20

BROWN 18 18 18 18

 447

SAS Data Set Finance.Funddrive

LastName Qtr1 Qtr2 Qtr3 Qtr4

BRYANT 16 18 20 18

BURNETTE 10 10 10 10

CHEUNG 30 30 30 30

LEHMAN 20 20 20 20

VALADEZ 14 18 40 25

The following program rotates the data set and lists the first 16 observations in the new data set.

data work.rotate(drop=qtr1-qtr4);

 set finance.funddrive;

 array contrib{4} qtr1-qtr4;

 do Qtr=1 to 4;

 Amount=contrib{qtr};

 output;

 end;

run;

proc print data=rotate(obs=16) noobs;

run;

LastName Qtr Amount

ADAMS 1 18

ADAMS 2 18

ADAMS 3 20

ADAMS 4 20

ALEXANDER 1 15

ALEXANDER 2 18

ALEXANDER 3 15

ALEXANDER 4 10

APPLE 1 25

APPLE 2 25

APPLE 3 25

APPLE 4 25

ARTHUR 1 10

ARTHUR 2 25

ARTHUR 3 20

 448

LastName Qtr Amount

ARTHUR 4 30

Summary

Text Summary

Purpose of SAS Arrays

An array is a temporary grouping of variables under a single name. This can reduce the number
of statements that are needed to process variables and can simplify the maintenance of DATA
step programs.

Defining an Array

To group previously defined data set variables into an array, use an ARRAY statement that
specifies the array's name, its dimension enclosed in braces, brackets, or parentheses, and the
elements to include. For example: array sales{4} qtr1 qtr2 qtr3 qtr4;

Variable Lists as Array Elements

You can use a variable list to specify array elements. Depending on the form of the variable list,
it can specify all numeric or all character variables, or a numbered range of variables.

Referencing Elements of an Array

When you define an array in a DATA step, an index value is assigned to each element. During
execution, you can use an array reference to perform actions on specific array elements. When
used in a DO loop, for example, the index variable of the iterative DO statement can reference
each element of the array.

The DIM Function

When using DO loops to process arrays, you can also use the DIM function in the TO clause of
the iterative DO statement. When you use the DIM function, you do not have to re-specify the
stop value of a DO statement if you change the dimension of the array.

Creating Variables with the ARRAY Statement

If you don't specify array elements in an ARRAY statement, SAS automatically creates the
variables for you by concatenating the array name and the numbers 1, 2, 3... up to the array
dimension. To create an array of character variables, add a dollar sign ($) after the array
dimension. By default, all character variables that are created with an ARRAY statement are
assigned a length of 8. However, you can specify a different length after the dollar sign.

Assigning Initial Values to Arrays

To assign initial values in an ARRAY statement, place the values in parentheses after the array
elements, specifying one initial value for each array element and separating each value with a
comma or blank. To assign initial values to character variables, enclose each value in quotation
marks and separate the values with commas.

 449

Creating Temporary Array Elements

You can create temporary array elements for DATA step processing without creating additional
variables. Just specify _TEMPORARY_ after the array name and dimension. This is useful when
the array is needed only to perform a calculation.

Multidimensional Arrays

To define a multidimensional array, specify the number of elements in each dimension, separated
by a comma. For example, array new{3,4} x1-x12; defines a two-dimensional array, with the
first dimension specifying the number of rows (3) and the second dimension specifying the
number of columns (4).

Referencing Elements of a Two-Dimensional Array

Multidimensional arrays are typically used with nested DO loops. If a DO loop processes a two-
dimensional array, you can reference any element within the array by specifying the two
dimensions.

Rotating Data Sets

You can use arrays to rotate a data set. Rotating a data set changes variables to observations or
observations to variables.

Points to Remember
� A SAS array exists only for the duration of the DATA step.
� Do not give an array the same name as a variable in the same DATA step. Also, avoid

using the name of a SAS function as an array name—the array will be correct, but you won't
be able to use the function in the same DATA step, and a warning will be written to the SAS
log.

� You can indicate the dimension of a one-dimensional array with an asterisk (*) as long as
you specify the elements of the array.

� When referencing array elements, be careful not to confuse variable names with the
array references. WgtDiff1 through WgtDiff5 is not the same as WgtDiff{1} through
WgtDiff{5} .

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which statement is false regarding an ARRAY stateme nt?
a. It is an executable statement.
b. It can be used to create variables.
c. It must contain either all numeric or all charac ter elements.
d. It must be used to define an array before the ar ray name can be

referenced.

2. What belongs within the braces of this ARRAY statem ent?

array contrib{?} qtr1-qtr4;
a. quarter
b. quarter*

 450

c. 1-4
d. 4

3. For the program below, select an iterative DO state ment to process all elements
in the contrib array.

data work.contrib;

 array contrib{4} qtr1-qtr4;

 ...

 contrib{i}=contrib{i}*1.25;

 end;

run;
a. do i=4;
b. do i=1 to 4;
c. do until i=4;
d. do while i le 4;

4. What is the value of the index variable that refere nces Jul in the statements
below?

array quarter{4} Jan Apr Jul Oct;

do i=1 to 4;

 yeargoal=quarter{i}*1.2;

end;
a. 1
b. 2
c. 3
d. 4

5. Which DO statement would not process all the elemen ts in the factors array
shown below?

 array factors{*} age height weight bloodpr;
a. do i=1 to dim(factors);
b. do i=1 to dim(*);
c. do i=1,2,3,4;
d. do i=1 to 4;

6. Which statement below is false regarding the use of arrays to create variables?
a. The variables are added to the program data vect or during the

compilation of the DATA step.
b. You do not need to specify the array elements in the ARRAY statement.
c. By default, all character variables are assigned a length of eight.
d. Only character variables can be created.

7. For the first observation, what is the value of diff{i} at the end of the second
iteration of the DO loop?

Weight1 Weight2 Weight3

192 200 215

137 130 125

 451

220 210 213

array wt{*} weight1-weight10;

array diff{9};

do i=1 to 9;

 diff{i}=wt{i+1}-wt{i};

end;
a. 15
b. 10
c. 8
d. -7

8. Finish the ARRAY statement below to create temporar y array elements that
have initial values of 9000, 9300, 9600, and 9900.

 array goal{4} ... ;
a. _temporary_ (9000 9300 9600 9900)
b. temporary (9000 9300 9600 9900)
c. _temporary_ 9000 9300 9600 9900
d. (temporary) 9000 9300 9600 9900

9. Based on the ARRAY statement below, select the arra y reference for the array
element q50 .

 array ques{3,25} q1-q75;
a. ques{q50}
b. ques{1,50}
c. ques{2,25}
d. ques{3,0}

10. Select the ARRAY statement that defines the array i n the following program.

data rainwear.coat;

 input category high1-high3 / low1-low3;

 ...

 do i=1 to 2;

 do j=1 to 3;

 compare{i,j}=round(compare{i,j}*1.12);

 end;

 end;

run;
a. array compare{1,6} high1-high3 low1-low3;
b. array compare{2,3} high1-high3 low1-low3;
c. array compare{3,2} high1-high3 low1-low3;
d. array compare{3,3} high1-high3 low1-low3;

Answers

1. Correct answer: a

 452

An ARRAY statement is not an executable statement; it merely defines an array.

2. Correct answer: d

The value in braces indicates the number of elements in the array. In this case, there are four
elements.

3. Correct answer: b

In the DO statement, you specify the index variable that represents the values of the array
elements. Then specify the start and stop positions of the array elements.

4. Correct answer: c

The index value represents the position of the array element. In this case, the third element is
Jul .

5. Correct answer: b

To process all the elements in an array, you can either specify the array dimension or use the
DIM function with the array name as the argument.

6. Correct answer: d

Either numeric or character variables can be created by an ARRAY statement.

7. Correct answer: a

At the end of the second iteration, diff{i} resolves as follows:

diff{2}=wt{2+1}-wt{2};

diff{2}=215-200

8. Correct answer: a

To create temporary array elements, specify _TEMPORARY_ after the array name and
dimension. Specify an initial value for each element, separated by either blanks or commas,
and enclose the values in parentheses.

9. Correct answer: c

This two-dimensional array would consist of three rows of 25 elements. The first row would
contain q1 through q25 , the second row would start with q26 and end with q50 , and the
third row would start with q51 and end with q75 .

10. Correct answer: b

The nested DO loops indicate that the array is named compare and is a two-dimensional
array that has two rows and three columns.

 453

Chapter 17: Reading Raw Data in Fixed Fields

Overview

Introduction

Raw data can be organized in several ways.

This external file contains data that is arranged in columns or fixed fields. You can specify a
beginning and ending column for each field. However, this file contains nonstandard data,
because one of the variable's values includes a special character, the dollar sign ($).

This external file contains no special characters, but its data is free format, meaning that it is not
arranged in columns. Notice that the values for a particular field do not begin and end in the same
columns.

How your data is organized and what type of data you have determine which input style you
should use to read the data. SAS provides three primary input styles—column input, formatted
input, and list input. This chapter teaches you how to use column input and formatted input to
read standard and nonstandard data that is arranged in fixed fields.

Objectives

In this chapter, you learn to
� distinguish between standard and nonstandard numeric data
� read standard fixed-field data
� read nonstandard fixed-field data.

Review of Column Input

Introduction

In Chapter 5, Creating SAS Data Sets from Raw Data , you learned how to use column input to
read raw data that is stored in an external file.

 454

You can use column input to read the values for Item , IDnum , InStock , and BackOrd from
the raw data file that is referenced by the fileref Invent .

input Item $ 1-13 IDnum $ 15-19 InStock 21-22

 BackOrd 24-25;

Notice that the INPUT statement lists the variables with their corresponding column locations in
order from left to right. However, one of the features of column input is the ability to read fields in
any order.

For example, you could have read the values for InStock and BackOrd before the values for
Item and IDnum .

input InStock 21-22 BackOrd 24-25 Item $ 1-13

 IDnum $ 15-19;

When you print a report that is based on this data set, by default, the variables will be listed in the
order in which they were created.

InStock BackOrd Item IDnum

3 20 BIRD FEEDER LG088

6 12 GLASS MUGS SB082

12 6 GLASS TRAY BQ049

15 20 PADDED HANGRS MN256

23 0 JEWELRY BOX AJ498

9 12 RED APRON AQ072

27 0 CRYSTAL VASE AQ672

21 0 PICNIC BASKET LS930

Column Input Features

Column input has several features that make it useful for reading raw data.
� It can be used to read character variable values that contain embedded blanks.

� input Name $ 1-25;

 455

� No placeholder is required for missing data. A blank field is read as missing and does not
cause other fields to be read incorrectly.

� input Item $ 1-13 IDnum $ 15-19

 Instock 21-22 Backord 24-25;

� Fields or parts of fields can be re-read.

� input Item $ 1-13 IDnum $ 15-19 Supplier $ 15-16

 InStock 21-22 BackOrd 24-25;

� Fields do not have to be separated by blanks or other delimiters.

� input Item $ 1-13 IDnum $ 14-18 InStock 19-20

� BackOrd 21-22;

Identifying Standard and Nonstandard Numeric Data

Standard Numeric Data

Standard numeric data values can contain only
� numbers
� decimal points
� numbers in scientific, or E, notation (23E4)
� minus signs and plus signs.

Some examples of standard numeric data are 15, -15, 15.4, +.05, 1.54E3, and -1.54E-3.

Nonstandard Numeric Data

Nonstandard numeric data includes
� values that contain special characters, such as percent signs (%), dollar signs ($), and

commas (,)
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

 456

The external file that is referenced by the fileref Empdata contains the personnel information for
the technical writing department of a small computer manufacturer. The fields contain values for
each employee's last name, first name, job title, and annual salary.

Notice that the values for Salary contain commas. So, the values for Salary are considered to
be nonstandard numeric values.

Choosing an Input Style

Nonstandard data values require an input style that has more flexibility than column input.

You can use formatted input , which combines the features of column input with the ability to
read both standard and nonstandard data.

Whenever you encounter raw data that is organized into fixed fields, you can use
� column input to read standard data only
� formatted input to read both standard and nonstandard data.

Using Formatted Input

General Form of the INPUT Statement Using Formatted Input

Formatted input is a very powerful method for reading both standard and nonstandard data in
fixed fields.

General form, INPUT statement using formatted input :

INPUT <pointer-control> variable informat.;

where
� pointer-control positions the input pointer on a specified column
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

 457

In this chapter, you will learn to work with two column pointer controls .
� The @n moves the input pointer to a specific column number.
� The +n moves the input pointer forward to a column number that is relative to the current

position.

Let's first take a look at the @n column pointer control.

Using the @ n Column Pointer Control

The @n is an absolute pointer control that moves the input pointer to a specific column number.
The @ moves the pointer to column n, which is the first column of the field that is being read.

General form, INPUT statement using formatted input and the @ n pointer control:

INPUT @n variable informat.;
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

Let's use the @n pointer control to locate variable values in the external file Empdata . As you
can see, the values for LastName begin in column 1. We could start with the @1 pointer control.

 input @1 LastName $7.

However, the default column pointer location is column 1, so you do not need to use a column
pointer control to read the first field.

 input LastName $7.

Next, the values for FirstName begin in column 9. To point to column 9, use an @ sign and the
column number in the INPUT statement:

 input LastName $7. @9 FirstName $5.

 458

Note The $7. and $5. informats are explained later in this chapter.

Reading Columns in Any Order

Column pointer controls are very useful. For example, you can use the @n to move a pointer
forward or backward when reading a record.

In this INPUT statement, the value for FirstName is read first, starting in column 9.

 input @9 FirstName $5.

Now let's read the values for LastName , which begin in the first column. Here you must use the
@n pointer control to move the pointer back to column 1.

 input @9 FirstName $5. @1 LastName $7.

The rest of the INPUT statement specifies the column locations of the raw data value for
JobTitle and Salary .

 input @9 FirstName $5. @1 LastName $7. @15 JobTitle 3.

 @19 Salary comma9.;

Note The $5., $7., 3., and comma9. informats are explained later in this chapter.

The +n Pointer Control

The +n pointer control moves the input pointer forward to a column number that is relative to the
current position. The + moves the pointer forward n columns.

General form, INPUT statement using formatted input and the + n pointer control:

INPUT +n variable informat.;
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

In order to count correctly, it is important to understand where the column pointer control is
located after each data value is read. Let's look at an example.

 459

Suppose you want to read the data from Empdata in the following order: LastName ,
FirstName , Salary , JobTitle . Like the @n pointer control, the default column location for
the +n pointer control is column 1. Because the values for LastName begin in column 1, a
column pointer control is not needed.

 input LastName $7.

With formatted input, the column pointer control moves to the first column following the field that
was just read. In this example, after LastName is read, the pointer moves to column 8.

To start reading FirstName , which begins in column 9, you move the column pointer control
ahead 1 column with +1.

 input LastName $7. +1 FirstName $5.

After reading FirstName , the column pointer moves to column 14. Now you want to skip over
the values for JobTitle and read the values for Salary , which begin in column 19. Move the
column pointer ahead 5 columns from column 14.

 input LastName $7. +1 FirstName $5. +5 Salary comma9.

The last field to be read contains the values for JobTitle . You can use the @n column pointer
control to return to column 15.

 input LastName $7. +1 FirstName $5. +5 Salary comm a9.

 @15 JobTitle 3.;

Note The $7., $5., comma9., and 3. informats are explained later in this chapter.

Note You can use the notation +(-n) to move the +n pointer control backward.

 460

Info For more information about the +(-n) notation, see the SAS documentation.

Using Informats

Remember that the general form of the INPUT statement for formatted input is

INPUT <pointer-control> variable informat.;

An informat is an instruction that tells SAS how to read raw data. SAS provides many informats
for reading standard and nonstandard data values. Here is a small sample.

PERCENTw.d DATEw. NENGOw.

$BINARYw. DATETIMEw. PDw.d

$VARYINGw. HEXw. PERCENTw.

$w. JULIANw. TIMEw.

COMMAw.d MMDDYYw. w.d

Note that
� each informat contains a w value to indicate the width of the raw data field
� each informat also contains a period, which is a required delimiter
� for some informats, the optional d value specifies the number of implied decimal places
� informats for reading character data always begin with a dollar sign ($).

Info For a complete list of informats, see the SAS documentation.

Reading Character Values

The $w. informat enables you to read character data. The w represents the field width of the data
value (the total number of columns that contain the raw data field).

In the example below, the $ indicates that FirstName is a character variable, the 5 indicates a
field width of five columns, and a period ends the informat.

 input @9 FirstName $5.;

 461

Reading Standard Numeric Data

The informat for reading standard numeric data is the w.d informat.

The w specifies the field width of the raw data value, the period serves as a delimiter, and the d
optionally specifies the number of implied decimal places for the value. The w.d informat ignores
any specified d value if the data already contains a decimal point.

For example, the raw data value that is shown below contains 6 digits (4 are decimals) and 1
decimal point. Therefore, the w. informat requires a field width of only 7 to correctly read the raw
data value.

Raw Data Value w. Informat Variable Value

34.0008 → 7.→ 34.0008

In the example that is shown below, the values for JobTitle in columns 15-17 contain only
numbers. Remember that standard numeric data values can contain only numbers, decimal
points, scientific notation, and plus and minus signs.

A d value is not necessary to read the values for JobTitle . Simply move the column pointer
control forward 7 spaces to column 15, name the variable, and specify a field width of 3.

 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.;

Warning Remember to specify the period in the informat name. For example, if you

omit the period in the following INPUT statement, SAS assigns a length of
3 to JobTitle instead of reading JobTitle with the 3. informat.

 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3;

Reading Nonstandard Numeric Data

The COMMAw.d informat is used to read numeric values and to remove embedded
� blanks
� commas
� dashes
� dollar signs
� percent signs
� right parentheses
� left parentheses, which are converted to minus signs.

The COMMAw.d informat has three parts:

1. the informat name COMMA

2 a value that specifies the width of the field to be read (including dollar w.

 462

signs, decimal places, or other special characters), followed by a period

3 an optional value that specifies the number of implied decimal places for
a value (not necessary if the value already contains decimal places).

d

In the example below, the values for Salary contain commas, which means that they are
nonstandard numeric values.

The values for Salary begin in column 19, so use the @n or +n pointer control to point to
column 19, and then name the variable.

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

 @19 Salary

Now add the COMMAw.d informat and specify the field width. The values end in column 27, so
the field width is 9 columns. Add a RUN statement to complete the DATA step.

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

 @19 Salary comma9.;

run;

If you use PROC PRINT to display the data set, the commas are removed from the values for
Salary in the resulting output.

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

 @19 Salary comma9.;

run;

 463

proc print data=perm.empinfo;

run;

Obs FirstName LastName JobTitle Salary

1 DONNY EVANS 112 29996.63

2 ALISA HELMS 105 18567.23

3 JOHN HIGGINS 111 25309.00

4 AMY LARSON 113 32696.78

5 MARY MOORE 112 28945.89

6 JASON POWELL 103 35099.50

7 JUDY RILEY 111 25309.00

Thus, the COMMAw.d informat does more than simply read the raw data values. It removes
special characters such as commas from numeric data and stores only numeric values in a SAS
data set.

DATA Step Processing of Informats

Let's place our INPUT statement in a DATA step and submit it for processing. Remember that
after the DATA step is submitted, it is compiled and then executed.

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTit le 3.

 @19 Salary comma9.;

run;

During the compile phase, the character variables in the program data vector are defined with the
exact length that is specified by the informat. But notice that the lengths that are defined for
JobTitle and Salary in the program data vector are different from the lengths that are
specified by their informats.

Remember, by default, SAS stores numeric values (no matter how many digits the value
contains) as floating-point numbers in 8 bytes of storage. The length of a stored numeric variable
is not affected by an informat's width nor by other column specifications in an INPUT statement.

However, it is still necessary to specify the actual width of a raw data field in an INPUT statement.
Otherwise, if you specify a default field width of 8 for all numeric values, you'll get inappropriate
variable values when the program executes.

 464

In the following example, the values for JobTitle would contain embedded blanks, thus
creating invalid numeric values.

data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7.

 +7 JobTitle 8. @19 Salary comma8.;

run;

Note Remember that the w value of the informat represents the width of the field in

the raw data file. The values for JobTitle only have a width of 3 in the raw
data file. However, because they are numeric values, SAS stores them with a
default length of 8.

Record Formats

The record format of an external file might affect how data is read with column input and
formatted input. A record format specifies how records are organized in a file.

In some operating environments, external files can have different types of record formats. Two
common record formats are fixed-length records and variable-length records.

Fixed-Length Records

External files that have a fixed-length record format have an end-of-record marker after a
predetermined number of columns. A typical record length is 80 columns.

Variable-Length Records

Files that have a variable-length record format have an end-of-record marker after the last field in
each record.

As you can see, the length of each record varies.

 465

Reading Variable-Length Records

When you are working with variable-length records that contain fixed-field data, you might have
values that are shorter than others or that are missing. This can cause problems when you try to
read the raw data into your SAS data set.

For example, notice that the following INPUT statement specifies a field width of 8 columns for
Receipts . In the third record, the input pointer encounters an end-of-record marker before the
8th column.

 input Dept $ 1-11 @13 Receipts comma8.;

Note The asterisk symbolizes the end-of-record marker and is not part of the data.

The input pointer moves down to the next record in an attempt to find a value for Receipts .
However, GRILL is a character value, and Receipts is a numeric variable. Thus, an invalid
data error occurs, and Receipts is set to missing.

The PAD Option

When you use column input or formatted input to read fixed-field data in variable-length records,
you can avoid problems by using the PAD option in the INFILE statement.The PAD option pads
each record with blanks so that all data lines have the same length.

 infile receipts pad;

The examples in this chapter have not required the PAD option. However, when you use column
input or formatted input to read fixed-field data in variable-length records, remember to determine

 466

whether or not you need to use the PAD option. For more information about the PAD option, see
the SAS documentation for your operating environment.

Warning The PAD option is useful only when missing data occurs at the end of a

record and when SAS encounters an end-of-record marker before the last
field is completely read.

The default value of the maximum record length is determined by your operating environment. If
you get unexpected results when reading many variables, you might need to change the
maximum record length by specifying the LRECL=option in the INFILE statement. For more
information about the LRECL= option, see the SAS documentation for your operating
environment.

Summary

Text Summary

Review of Column Input

When data is arranged in columns or fixed fields, you can use column input to read them. With
column input, the beginning and ending column are specified for each field. Character variables
are identified by a dollar ($) sign.

Column input has several features:
� Fields can be read in any order.
� It can be used to read character variables that contain embedded blanks.
� No placeholder is required for missing data. A blank field is read as missing and does not

cause other fields to be read incorrectly.
� Fields or parts of fields can be re-read.
� Fields do not have to be separated by blanks or other delimiters.
� It can be used to read standard character and numeric data.

Identifying Nonstandard Numeric Data

Standard numeric data values are values that contain only numbers, scientific notation, decimal
points, and plus and minus signs. When numeric data contains characters such as commas or
dollar signs, the data is considered to be nonstandard.

Nonstandard numeric data includes
� values that contain special characters, such as percent signs, dollar signs, and commas
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

Choosing an Input Style

SAS provides two input styles for reading data in fixed fields—column input and formatted
input . You can use
� column input to read standard data only
� formatted input to read both standard and nonstandard data.

Using Formatted Input

Formatted input uses column pointer controls to position the input pointer on a specified column.
A column pointer control is optional when the first variable is in the first column.

 467

The @n is an absolute pointer control that moves the input pointer to a specific column number.
You can read columns in any order with the @n column pointer control.

The +n is a relative pointer control that moves the input pointer forward to a column number that
is relative to the current position. The +n pointer control cannot move backward. However, you
can use the notation +(-n) to move the pointer control backward.

Using Informats

An informat tells SAS how to read raw data. There are informats for reading standard and
nonstandard character values and for reading standard and nonstandard numeric data values.

Informats always contain a w value to indicate the width of the raw data field. A period (.) ends
the informat or separates the w value from the optional d value, which specifies the number of
implied decimal places.

Record Formats

A record format specifies how records are organized in a file. Some operating environments have
different types of record formats; the two most common are fixed-length records and variable-
length records .

When you read variable-length records that contain fixed-field data into a SAS data set, there
might be values that are shorter than others or that are missing. The PAD option pads each
record with blanks so that all data lines have the same length.

Points to Remember
� When you use column input or formatted input, the input pointer stops on the column

following the last column that was read.
� When you use informats, you do not need to specify a d value if the data values already

contain decimal places.
� Column input can be used to read standard character or standard numeric data only.
� Formatted input can be used to read both standard and nonstandard data.
� When reading variable-length records that contain fixed-field data, you can avoid

problems by using the PAD option in the INFILE statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which SAS statement correctly uses column input to read the values in the raw
data file below in this order: Address (4th field), SquareFeet (second field),
Style (first field), Bedrooms (third field)?

a. input Address 15-29 SquareFeet 8-11 Style 1-6

b. Bedrooms 13;

c. input $ 15-29 Address 8-11 SquareFeet $ 1-6 Style

d. 13 Bedrooms;

 468

e. input Address $ 15-29 SquareFeet 8-11 Style $ 1-6

f. Bedrooms 13;

g. input Address 15-29 $ SquareFeet 8-11 Style 1-6

h. $ Bedrooms 13;

2. Which is not an advantage of column input?
a. It can be used to read character variables that contain embedded

blanks.
b. No placeholder is required for missing data.
c. Standard as well as nonstandard data values can be read.
d. Fields do not have to be separated by blanks or other delimiters.

3. Which is an example of standard numeric data?
a. -34.245
b. $24,234.25
c. 1/2
d. 50%

4. Formatted input can be used to read
a. standard free-format data
b. standard data in fixed fields
c. nonstandard data in fixed fields
d. both standard and nonstandard data in fixed fiel ds

5. Which informat should you use to read the values in column 1-5?

a. w.
b. $w.
c. w.d
d. COMMAw.d

6. The COMMAw.d informat can be used to read which of the followin g values?
a. 12,805
b. $177.95
c. 18 %
d. all of the above

7. Which INPUT statement correctly reads the values fo r ModelNumber (first field)
after the values for Item (second field)? Both Item and ModelNumber are
character variables.

a. input +7 Item $9. @1 ModelNumber $5.;
b. input +6 Item $9. @1 ModelNumber $5.;
c. input @7 Item $9. +1 ModelNumber $5.;
d. input @7 Item $9 @1 ModelNumber 5.;

 469

8. Which INPUT statement correctly reads the numeric v alues for Cost (third
field)?

a. input @17 Cost 7.2;
b. input @17 Cost 9.2.;
c. input @17 Cost comma7.;
d. input @17 Cost comma9.;

9. Which SAS statement correctly uses formatted input to read the values in this
order: Item (first field), UnitCost (second field), Quantity (third field)?

a. input @1 Item $9. +1 UnitCost comma6.

b. @18 Quantity 3.;

c. input Item $9. @11 UnitCost comma6.

d. @18 Quantity 3.;

e. input Item $9. +1 UnitCost comma6.

f. @18 Quantity 3.;
g. all of the above

10. Which raw data file requires the PAD option in the INFILE statement in order to
correctly read the data using either column input o r formatted input?

a.

b.

c.

 470

d.

Answers

1. Correct answer: c

Column input specifies the variable’s name, followed by a dollar ($) sign if the values are
character values, and the beginning and ending column locations of the raw data values.

2. Correct answer: c

Column input is useful for reading standard values only.

3. Correct answer: a

A standard numeric value can contain numbers, scientific notation, decimal points, and plus
and minus signs. Nonstandard numeric data includes values that contain fractions or special
characters such as commas, dollar signs, and percent signs.

4. Correct answer: d

Formatted input can be used to read both standard and nonstandard data in fixed fields.

5. Correct answer: b

The $w. informat enables you to read character data. The w represents the field width of the
data value or the total number of columns that contain the raw data field.

6. Correct answer: d

The COMMAw.d informat strips out special characters such as commas, dollar signs, and
percent signs from numeric data, and stores only numeric values in a SAS data set.

7. Correct answer: b

The +6 pointer control moves the input pointer to the beginning column of Item , and the
values are read. Then the @1 pointer control returns to column 1, where the values for
ModelNumber are located.

8. Correct answer: d

The values for Cost contain dollar signs and commas, so you must use the COMMAw.d
informat. Counting the numbers, dollar sign, comma, and decimal point, the field width is 9
columns. Because the data value contains decimal places, a d value is not needed.

9. Correct answer: d

The default location of the column pointer control is column 1, so a column pointer control is
optional for reading the first field. You can use the @n or +n pointer controls to specify the

 471

beginning column of the other fields. You can use the $w. informat to read the values for
Item , the COMMAw.d informat for UnitCost , and the w.d informat for Quantity .

10. Correct answer: a

Use the PAD option in the INFILE statement to read variable-length records that contain
fixed-field data. The PAD option pads each record with blanks so that all data lines have the
same length.

 472

Chapter 18: Reading Free-Format Data

Overview

Introduction

As you learned in Chapter 17, Reading Raw Data in Fixed Fields , raw data can be organized in
several ways.

This external file contains data that is arranged in columns , or fixed fields. You can specify a
beginning and ending column for each field.

By contrast, the following external file contains data that is free format , meaning data that is not
arranged in columns. Notice that the values for a particular field do not begin and end in the same
columns.

In the previous chapter, you learned that how your data is organized determines which input style
you should use to read the data. SAS provides three primary input styles: column, formatted, and
list input. Previously, you learned how to use column input and formatted input. This chapter
teaches you how to use list input to read free-format data that is not arranged in fixed fields.

Objectives

In this chapter, you learn to use the INPUT statement with list input to read
� free-format data (data that is not organized in fixed fields)
� free-format data that is separated by nonblank delimiters, such as commas
� free-format data that contains missing values
� character values that exceed eight characters
� nonstandard free-format data
� character values that contain embedded blanks.

In addition, you learn how to mix column, formatted, and list input styles in a single INPUT
statement.

Reading Free-Format Data

 473

You have already worked with raw data that is in fixed fields. In doing so, you used column input
to read standard data values in fixed fields. You have also used formatted input to read both
standard and nonstandard data in fixed fields.

Suppose you have raw data that is free format; that is, it is not arranged in fixed fields. The fields
are often separated by blanks or by some other delimiter, such as the pound sign (#) shown
below. In this case, column input and formatted input that you might have used before to read
standard and nonstandard data in fixed fields will not enable you to read all of the values in the
raw data file.

Using List Input

List input is a powerful tool for reading both standard and nonstandard free-format data.

General form, INPUT statement using list input:

INPUT variable <$>;

where
� variable specifies the variable whose value the INPUT statement is to read
� $ specifies that the variable is a character variable.

Suppose you have an external data file like the one that follows. The file, which is referenced by
the fileref Credit , contains the results of a survey on the use of credit cards by males and females
in the 18-39 age range.

You need to read the data values for
� gender
� age
� number of bank credit cards

 474

� bank card use per month
� number of department store credit cards
� department store card use per month.

List input might be the easiest input style to use because, as shown in the INPUT statement
below, you simply list the variable names in the same order as the corresponding raw data fields.
Remember to distinguish character variables from numeric variables.

nput Gender $ Age Bankcard FreqBank Deptcard

 FreqDept;

Because list input, by default, does not specify column locations,
� all fields must be separated by at least one blank or other delimiter
� fields must be read in order from left to right
� you cannot skip or re-read fields.

Processing List Input

It's important to remember that list input causes SAS to scan the input lines for values rather than
reading from specific columns. When the INPUT statement is submitted for processing, the input
pointer is positioned at column 1 of the raw data file, as shown below.

data perm.survey;

 infile credit;

 input Gender $ Age Bankcard FreqBank Deptcard

 FreqDept;

run;

SAS reads the first field until it encounters a blank space. The blank space indicates the end of
the field, and the data value is assigned to the program data vector for the first variable in the
INPUT statement.

Next, SAS scans the record until the next nonblank space is found, and the second value is read
until another blank is encountered. Then the value is assigned to its corresponding variable in the
program data vector.

This process of scanning ahead to the next nonblank column, reading the data value until a blank
is encountered, and assigning the value to a variable in the program data vector continues until

 475

all the fields have been read and values have been assigned to variables in the program data
vector.

When the DATA step has finished executing, you can display the data set with the PRINT
procedure. The code below produces the output that follows.

 proc print data=perm.survey;

 run;

(Partial Output)

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0

7 MALE 25 2 9 2 1

Working with Delimiters

Most free-format data fields are clearly separated by blanks and are easy to imagine as variables
and observations. But fields can also be separated by other delimiters, such as commas, as
shown below.

When characters other than blanks are used to separate the data values, you can tell SAS which
field delimiter to use. Use the DLM= option in the INFILE statement to specify a delimiter other
than a blank (the default).

General form, DLM= option:

 476

DLM=delimiter(s)

where delimiter(s) specifies a delimiter for list input in either of the following forms:
� 'list-of-delimiting-characters' specifies one or more characters (up to 200) to read as

delimiters. The list of characters must be enclosed in quotation marks.
� character-variable specifies a character variable whose value becomes the delimiter.

Example

The following program creates the output shown below.

data perm.survey;

 infile credit dlm=',';

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0

7 MALE 25 2 9 2 1

8 FEMALE 21 1 4 2 6

9 MALE 38 3 11 4 3

10 FEMALE 30 3 5 1 0

Warning The field delimiter must not be a character that occurs in a data

value. For example, this raw data file contains values for
LastName and Salary . Notice that the values for Salary
contain commas.

If the field delimiter is also a comma, the fields are identified incorrectly, as shown below.

 477

SAS Data Set

Obs LastName Salary

1 BROWN 24

2 JOHNSON 25

3 McABE 21

Note Later in this chapter, you'll learn how to work with data values that contain

delimiters.

Reading a Range of Variables

When the variable values in the raw data file are sequential and are separated by a blank (or by
another delimiter), you can specify a range of variables in the INPUT statement. This is especially
useful if your data contains similar variables, such as the answers to a questionnaire.

For example, the following INPUT statement creates five new numeric variables and assigns
them the names Ques1, Ques2 , Ques3 , and so on. You can also specify a range in the VAR
statement in the PROC PRINT step to list a range of specific variables.

data survey.phone;

 infile survey;

 input IDnum $ Ques1-Ques5;

run;

proc print data=survey.phone;

 var ques1-ques3;

run;

Obs Ques1 Ques2 Ques3

1 23 94 56

2 26 55 49

3 33 99 54

4 71 33 22

 478

Obs Ques1 Ques2 Ques3

5 88 49 29

If you are specifying a range of character variables, both the variable list and the $ sign must be
enclosed in parentheses.

data survey.stores;

 infile stordata;

 input Age (Store1-Store3) ($);

run;

proc print data=survey.stores;

run;

Warning You can also specify a range of variables using formatted input. If you

specify a range of variables using formatted input, both the variable list and
the format must be enclosed in parentheses, regardless of the variable's
type.

data test.scores;

 infile group3;

 input Age (Score1-Score4) (6.);

 run;

Limitations of List Input

In its default form, list input places several limitations on the types of data that can be read:
� Although the width of a field can be greater than eight columns, both character and

numeric variables have a default length of 8. Character values that are longer than eight
characters will be truncated.

� Data must be in standard numeric or character format.
� Character values cannot contain embedded delimiters.
� Missing numeric and character values must be represented by a period or some other

character.

Note There are ways to work around these limitations using modified list input,

which will be discussed later in this chapter.

Reading Missing Values

Reading Missing Values at the End of a Record

Suppose the third person represented in the raw data file below did not answer the questions
about how many department store credit cards she has and how often she uses them.

 479

Because the missing values occur at the end of the record, you can use the MISSOVER option in
the INFILE statement to read the missing values at the end of the record. The MISSOVER option
prevents SAS from going to another record if, when using list input, it does not find values in the
current line for all the INPUT statement variables. At the end of the current record, values that are
expected but not found are set to missing.

For the raw data file shown above, the MISSOVER option prevents the fields in the fourth record
from being read as values for Deptcard and FreqDept in the third observation. Note that
Deptcard and FreqDept are set to missing.

data perm.survey;

 infile credit missover;

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 . .

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0

Warning The MISSOVER option works only for missing values that occur

at the end of the record.

Reading Missing Values at the Beginning or Middle o f a Record

Remember that the MISSOVER option works only for missing values that occur at the end of the
record. A different method is required when you are using list input to read raw data that contains
missing values at the beginning or middle of a record. Let's look at what happens when a missing
value occurs at the beginning or middle of a record.

Suppose the value for Age is missing in the first record.

 480

When the program below executes, each field in the raw data file is read one by one. The INPUT
statement tells SAS to read six data values from each record. However, the first record contains
only five values.

data perm.survey;

 infile credit dlm=',';

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

The two commas in the first record are interpreted as one delimiter. The incorrect value (1) is
read for Age. The program continues to read subsequent incorrect values for Bankcard (8),
FreqBank (0), and Deptcard (0). The program then attempts to read the character filed
FEMALE, at the beginning of the second record, as the value for the numeric variable FreqDept .
This causes the value of FreqDept in the first observation to be interpreted as missing. The
input pointer then moves down to the third record to begin reading values for the second
observation. Therefore, the first observation in the data set contains incorrect values and values
from the second in the raw data file are not included.

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 1 8 0 0 .

2 FEMALE 34 2 10 3 3

3 MALE 35 2 12 4 8

4 FEMALE 36 4 16 3 7

The DSD Option

You can use the DSD option in the INFILE statement to correctly read the raw data. The DSD
option changes how SAS treats delimiters when list input is used. Specifically, the DSD option
� sets the default delimiter to a comma
� treats two consecutive delimiters as a missing value
� removes quotation marks from values.

When the following program reads the raw data file, the DSD option sets the default delimiter to a
comma and treats the two consecutive delimiters as a missing value. Therefore, the data is read
correctly.

data perm.survey;

 481

 infile credit dsd;

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE . 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

The DLM= Option

If the data uses multiple delimiters or a single delimiter other than a comma, then simply specify
the delimiter value(s) with the DLM= option. In the following example, an asterisk (*) is used as a
delimiter. However, the data is still read correctly because of the DSD option.

data perm.survey;

 infile credit dsd dlm='*';

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

 482

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE . 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

The DSD option can also be used to read raw data when there is a missing value at the
beginning of a record, as long as a delimiter precedes the first value in the record.

data perm.survey;

 infile credit dsd;

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

proc print data=perm.survey;

run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

You can also use the DSD and DLM= options to read fields that are delimited by blanks.

data perm.survey;

 infile credit dsd dlm=' ';

 input Gender $ Age Bankcard FreqBank

 Deptcard FreqDept;

run;

Note Later in this chapter, you'll learn how to use the DSD option to remove

quotation marks from values in raw data.

 483

Specifying the Length of Character Values

Remember that when you use list input to read raw data, character values are assigned a default
length of 8. Let's look at what happens when list input is used to read character variables whose
values are longer than 8.

The raw data file that is referenced by the fileref Citydata contains 1970 and 1980 population
figures for several large U.S. cities. Notice that some city names are rather long.

The longer character values are truncated when they are written to the program data vector.

PROC PRINT output shows the truncated values for City .

data perm.growth;

 infile citydata;

 input City $ Pop70 Pop80;

run;

proc print data=perm.growth;

run;

Obs City Pop70 Pop80

1 ANCHORAG 48081 174431

2 ATLANTA 495039 425022

3 BOSTON 641071 562994

4 CHARLOTT 241420 314447

5 CHICAGO 3369357 3005072

6 DALLAS 844401 904078

7 DENVER 514678 492365

8 DETROIT 1514063 1203339

 484

Obs City Pop70 Pop80

9 MIAMI 334859 346865

10 PHILADEL 1949996 1688210

11 SACRAMEN 257105 275741

The LENGTH Statement

Remember, variable attributes are defined when the variable is first encountered in the DATA
step. In the program below, the LENGTH statement precedes the INPUT statement and defines
both the length and type of the variable City . A length of 12 has been assigned to accommodate
PHILADELPHIA, which is the longest value for City .

data perm.growth;

 infile citydata;

 length City $ 12;

 input city $ Pop70 Pop80;

run;

proc print data=perm.growth;

run;

Using this method, you do not need to specify City 's type in the INPUT statement. However,
leaving the $ in the INPUT statement will not produce an error. Your output should now display
the complete values for City .

Obs City Pop70 Pop80

1 ANCHORAGE 48081 174431

2 ATLANTA 495039 425022

3 BOSTON 641071 562994

4 CHARLOTTE 241420 314447

5 CHICAGO 3369357 3005072

6 DALLAS 844401 904078

 485

Obs City Pop70 Pop80

7 DENVER 514678 492365

8 DETROIT 1514063 1203339

9 MIAMI 334859 346865

10 PHILADELPHIA 1949996 1688210

11 SACRAMENTO 257105 275741

Note Because variable attributes are defined when the variable is first

encountered in the DATA step, a variable that is defined in a
LENGTH statement (if it precedes an INPUT statement) will
appear first in the data set, regardless of the order of the
variables in the INPUT statement.

Modifying List Input

You can make list input more versatile by using modified list input. There are two modifiers that
can be used with list input.
� The ampersand (&) modifier is used to read character values that contain embedded

blanks.
� The colon (:) modifier is used to read nonstandard data values and character values that

are longer than eight characters, but which contain no embedded blanks.

You can use modified list input to read the file shown below. This file contains the names of the
10 largest U.S. cities ranked in order based on their 1986 estimated population figures.

Notice that some of the values for city names contain embedded blanks. Also, note that the
values representing the population of each city are nonstandard numeric values (they contain
commas).

In the following sections you will learn how to use the ampersand (&) modifier to read the values
for city (City). Then you will learn how the colon (:) modifier can be used to read the
nonstandard numeric values that represent population (Pop86).

Reading Values That Contain Embedded Blanks

 486

The ampersand (&) modifier enables you to read character values that contain single embedded
blanks. The & indicates that a character value that is being read with list input might contain one
or more single embedded blanks. The value is read until two or more consecutive blanks are
encountered. The & modifier precedes a specified informat if one is used.

 input Rank City &;

In the raw data file shown below, each value of City is followed by two consecutive blanks.
There are two ways that you can use list input to read the values of City .

Using the Ampersand (&) Modifier with a LENGTH Stat ement

As shown below, you can use a LENGTH statement to define the length of City , and then add
an & modifier to the INPUT statement to indicate that the values contain embedded blanks.

Using the Ampersand (&) Modifier with an Informat

You can also read the values for City with the & modifier followed by the $w. informat, which
reads standard character values, as shown below. When you do this, the w value in the informat
determines the variable's length and should be large enough to accommodate the longest value.

Note Remember that you must use two consecutive blanks as delimiters when you

use the & modifier. You cannot use any other delimiter to indicate the end of
each field.

Reading Nonstandard Values

The colon (:) modifier enables you to read nonstandard data values and character values that are
longer than eight characters, but which contain no embedded blanks. The colon (:) indicates that
values are read until a blank (or other delimiter) is encountered, and then an informat is applied. If
an informat for reading character values is specified, the w value specifies the variable's length,
overriding the default length.

Notice the values representing the 1986 population of each city in the raw data file below.
Because they contain commas, these values are nonstandard numeric values.

 487

In order to read these values, you can modify list input with the colon (:) modifier, followed by the
COMMAw.d informat, as shown in the program below. Notice that the COMMAw.d informat does
not specify a w value.

data perm.cityrank;

 infile topten;

 input Rank City & $12.

 Pop86 : comma.;

Remember that list input reads each value until the next blank is detected. The default length of
numeric variables is 8, so you don't need to specify a w value to indicate the length of a numeric
variable.

This is different from using a numeric informat with formatted input. In that case, you must
specify a w value in order to indicate the number of columns to be read.

Processing the DATA Step

At compile time, the informat $12. in the example below sets the length of City to 12 and stores
this information in the descriptor portion of the data set. During the execution phase, however, the
w value of 12 does not determine the number of columns that are read. This is different from the
function of informats in the formatted input style.

data perm.cityrank;

 infile topten;

 input Rank City & $12.

 Pop86 : comma.;

run;

 488

The & modifier indicates that the values for City should be read until two consecutive blanks are
encountered. Therefore, the value NEW YORK is read from column 4 to column 11, a total of only
8 columns. When blanks are encountered in both columns 12 and 13, the value NEW YORK is
written to the program data vector.

data perm.cityrank;

 infile topten;

 input Rank City & $12.

 Pop86 : comma.;

run;

The input pointer moves forward to the next nonblank column, which is column 14 in the first
record. Now the values for Pop86 are read from column 14 until the next blank is encountered.
The COMMAw.d informat removes the commas, and the value is written to the program data
vector.

data perm.cityrank;

 infile topten;

 input Rank City & $12.

 Pop86 : comma.;

run;

Notice that the character values for City and the nonstandard values for Pop86 are stored
correctly in the data set.

SAS Data Set Perm.Cityrank

Rank City Pop86

 489

SAS Data Set Perm.Cityrank

Rank City Pop86

1 NEW YORK 7262700

2 LOS ANGELES 3259340

3 CHICAGO 3009530

4 HOUSTON 1728910

5 PHILADELPHIA 1642900

6 DETROIT 1086220

7 SAN DIEGO 1015190

8 DALLAS 1003520

9 SAN ANTONIO 914350

10 PHOENIX 894070

Comparing Formatted Input and Modified List Input

As you have seen, informats work differently in modified list input than they do in formatted input.
With formatted input, the informat determines both the length of character variables and the
number of columns that are read. The same number of columns are read from each record.

 input @3 City $ 12 .;

The informat in modified list input determines only the length of the variable, not the number of
columns that are read. Here, the raw data values are read until two consecutive blanks are
encountered.

 input City & $12.;

Creating Free-Format Data

In Chapter 5, Creating SAS Data Sets from Raw Data , you learned how the PUT statement can
be used with column output to write observations from a SAS data set to a raw data file. The PUT
statement can also be used with list output to create free-format raw data files.

List output is similar to list input. With list output, you simply list the names of the variables whose
values you want to write. The PUT statement writes a variable, leaves a blank, then writes the
next value.

 490

General form, PUT statement using list output:

PUT variable <: format>;

where
� variable specifies the variable whose value you want to write
� a colon (:) precedes a format
� format. specifies a format to use for writing the data values.

The following program creates the raw data file Findat , using the SAS data set Perm.Finance .
The DATEw. format is used to write the value of Date in the form DDMMYYYY.

data _null_;

 set perm.finance;

 file 'c:\data\findat';

 put ssn name salary date : date9.;

run;

SAS Data Set Finance

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

Specifying a Delimiter

You can use the DLM= option with a FILE statement to create a character-delimited raw data file.

data _null_;

 set perm.finance;

 file 'c:\data\findat2' dlm=',';

 put ssn name salary date : date9.;

run;

SAS Data Set Finance

 491

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

Note For creating a simple raw data file, an alternative to the DATA step is the

EXPORT procedure.

General form, PROC EXPORT:

PROC EXPORT DATA=SAS-data-set;
 OUTFILE=filename <DELIMITER='delimiter'>;
RUN;

where
� SAS-data-set names the input SAS data set
� filename specifies the complete path and file name of the output
� delimiter specifies the delimiter to separate columns of data in the output file.

Note For more

information
about the
EXPORT
procedure,
see the
SAS
documenta
tion.

Using the DSD Option

What happens if you need to create a comma-delimited file that requires the use of a format that
writes out values using commas?

If you used the following program, the resulting raw data file would contain five fields rather than
four.

data _null_;

 492

 set perm.finance;

 file 'c:\data\findat2' dlm=',';

 put ssn name salary : comma6. date date9.;

run;

SAS Data Set Finance

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

You can use the DSD option in the FILE statement to specify that data values containing commas
should be enclosed in quotation marks. Remember that the DSD option uses a comma as a
delimiter, so a DLM= option isn't necessary here.

data _null_;

 set perm.finance;

 file 'c:\data\findat2' dsd;

 put ssn name salary : comma. date : date9.;

run;

Reading Values That Contain Delimiters within a Quo ted String

You can also use the DSD option in an INFILE statement to read values that contain delimiters
within a quoted string. As shown in the following PROC PRINT output, the INPUT statement
treats the commas within the values for Salary as valid characters and removes the quotation
marks from the character strings before the value is stored.

data work.finance2;

 493

 infile findat2 dsd;

 length SSN $ 11 Name $ 9;

 input ssn name Salary : comma. Date date9.;

run;

proc print data=work.finance2;

 format date date9.;

run;

Obs SSN Name Salary Date

1 074-53-9892 Vincent 35000 22MAY1997

2 776-84-5391 Phillipon 29750 15DEC1996

3 929-75-0218 Gunter 27500 30APR1997

4 446-93-2122 Harbinger 33900 08JUL1996

5 228-88-9649 Benito 28000 04MAR1996

6 029-46-9261 Rudelich 35000 15FEB1995

7 442-21-8075 Sirignano 5000 22NOV1995

Mixing Input Styles

Evaluating your raw data and choosing the most appropriate input style is a very important task.
You have already worked with three input styles for reading raw data.

Input Style Reads

Column standard data values in fixed fields

Formatted nonstandard data values in fixed fields

List data values that are not arranged in fixed fields, but are separated by
blanks or other delimiters

With some file layouts, you might need to mix input styles in the same INPUT statement in order
to read the data correctly.

Look at the raw data file below and think about how to combine input styles to read these values.

 494

� Column input is an appropriate choice for the first field because the values can be read
as standard character values and are located in fixed columns.

� The next two fields are also located in fixed columns, but the values require an informat.
So, formatted input is a good choice here.

� Values in the fourth field begin in column 28 but do not end in the same column. List input
is appropriate here, but notice that some values are longer than eight characters. You need
to use the : format modifier with an informat to read these values.

� The last field does not always begin or end in the same column, so list input is the best
input style for those values.

Field Description Starting
Column

Field
Width

Data
Type

Input Style

Social Security # 1 11 character column

Date of Hire 13 7 date formatted

Annual Salary 21 6 numeric formatted

Department 28 5 to 9 character list

Phone Extension ?? 4 numeric list

The INPUT statement to read the data should look like this:

data perm.mixed;

 infile rawdata;

 input SSN $ 1-11 @13 HireDate date7.

 @21 Salary comma6.Department : $9. Phone;

run;

proc print data=perm.mixed;

run;

When you submit the PRINT procedure, the output displays values for each variable.

Obs SSN HireDate Salary Department Phone

1 209-20-3721 6581 41983 SALES 2896

2 223-96-8933 9619 27356 EDUCATION 2344

3 232-18-3485 7899 33167 MARKETING 2674

4 251-25-9392 9017 34033 RESEARCH 2956

Additional Features

Writing Character Strings and Variable Values

You can use a PUT statement to write both character strings and variable values to a raw data
file. To write out a character string, simply add a character string, enclosed in quotation marks, to
the PUT statement. It's a good idea to include a blank space as the last character in the string to
avoid spacing problems.

filename totaldat 'c:\records\junsales';

data _null_;

 495

 set work.totals;

 file totaldat;

 put 'Sales for salesrep ' salesrep

 'totaled ' sales : dollar9.;

run;

SAS Data Set Work.Totals

Obs SalesRep Sales

1 Friedman $14,893

2 Keane $14,324

3 Schuster $13,914

4 Davidson $13,674

Note For more information about using the PUT statement to write character strings,

see the SAS documentation for your operating environment.

Summary

Text Summary

Free-Format Data

External files can contain raw data that is free format; that is, the data is not arranged in fixed
fields. The fields can be separated by blanks or by some other delimiter, such as commas.

Using List Input

Free-format data can easily be read with list input because you do not need to specify column
locations of the data. You simply list the variable names in the same order as the corresponding
raw data fields. You must distinguish character variables from numeric variables by using the
dollar ($) sign.

When characters other than blanks are used to separate the data values, you can specify the
field delimiter by using the DLM= option in the INFILE statement.

You can also specify a range of variables in the INPUT statement when the variable values in the
raw data file are sequential and are separated by blanks (or by some other delimiter). This is
especially useful if your data contains similar variables, such as the answers to a questionnaire.

In its simplest form, list input places several limitations on the types of data that can be read.

 496

Reading Missing Values

If your data contains missing values at the end of a record, you can use the INFILE statement
with the MISSOVER option to prevent SAS from going to the next record to find the missing
values.

If your data contains missing values at the beginning or in the middle of a record, you might be
able to use the DSD option in the INFILE statement to correctly read the raw data. The DSD
option sets the default delimiter to a comma and treats two consecutive delimiters as a missing
value.

If the data uses multiple delimiters or a single delimiter other than a comma, you can use both the
DSD option and the DLM= option in the INFILE statement.

The DSD option can also be used to read raw data when there is a missing value at the
beginning of a record, as long as a delimiter precedes the first value in the record.

Specifying the Length of Character Values

You can specify the length of character variables by using the LENGTH statement . The
LENGTH statement enables you to use list input to read names that are longer than eight
characters without truncating them.

Because variable attributes are defined when the variable is first encountered in the DATA step,
the LENGTH statement precedes the INPUT statement and defines both the length and the type
of the variable.

When you use the LENGTH statement, you do not need to specify the variable type again in the
INPUT statement.

Modifying List Input

Modified list input can be used to read values that contain embedded blanks and nonstandard
values. Modified list input uses two format modifiers:
� the ampersand (&) modifier enables you to read character values that contain single

embedded blanks
� the colon (:) modifier enables you to read nonstandard data values and character

values that are longer than eight characters, but which contain no embedded blanks.

Remember that informats work differently in modified list input than they do in formatted input.

Creating Free-Format Data

You can create a raw data file using list output . With list output, you simply list the names of the
variables whose values you want to write. The PUT statement writes a variable, leaves a blank,
then writes the next value.

You can use the DLM= option with a FILE statement to create a delimited raw data file. You can
use the DSD option in a FILE statement to specify that data values containing commas should be
enclosed in quotation marks. You can also use the DSD option to read values that contain
delimiters within a quoted string.

 497

Mixing Input Styles

With some file layouts, you might need to mix input styles in the same INPUT statement in order
to read the data correctly.

Points to Remember
� When you use list input,

o fields must be separated by at least one blank or other delimiter.
o fields must be read in order, from left to right. You cannot skip or re-read fields.
o use a LENGTH statement to avoid truncating character values that are longer

than eight characters.
� In formatted input, the informat determines both the length of character variables and the

number of columns that are read. The same number of columns are read from each record.
� The informat in modified list input determines only the length of the variable value, not the

number of columns that are read.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. The raw data file referenced by the fileref Student s contains data that is

a. arranged in fixed fields
b. free format
c. mixed format
d. arranged in columns

2. Which input style should be used to read the values in the raw data file that is
referenced by the fileref Students?

a. column
b. formatted
c. list
d. mixed

3. Which SAS program was used to create the raw data f ile Teamdat from the SAS
data set Work.Scores?

SAS Data Set Work.Scores

 498

1 Joe 87 Blue Beetles, Durham

2 Dani 79 Raleigh Racers, Raleigh

3 Lisa 85 Sand Sharks, Cary

4 Matthew 76 Blue Beetles, Durham

a. data _null_;

b. set work.scores;

c. file 'c:\data\teamdat' dlm=',';

d. put name highscore team; run;
e.

f. data _null_;

g. set work.scores;

h. file 'c:\data\teamdat' dlm=' ';

i. put name highscore team;

j. run;
k.

l. data _null_;

m. set work.scores;

n. file 'c:\data\teamdat' dsd;

o. put name highscore team;

p. run;

q. data _null_;

r. set work.scores;

s. file 'c:\data\teamdat';

t. put name highscore team;

4. Which SAS statement reads the raw data values in or der and assigns them to
the variables shown below?

Variables: FirstName (character), LastName (character), Age (numeric), School
(character), Class (numeric)

 499

a. input FirstName $ LastName $ Age School $ Class;

b. input FirstName LastName Age School Class;

c. input FirstName $ 1-4 LastName $ 6-12 Age 14-15

d. School $ 17-19 Class 21;

e. input FirstName 1-4 LastName 6-12 Age 14-15

f. School 17-19 Class 21;

5. Which SAS statement should be used to read the raw data file that is referenced
by the fileref Salesrep?

a. infile salesrep;

b. infile salesrep ':';

c. infile salesrep dlm;

d. infile salesrep dlm=':';

6. Which of the following raw data files can be read b y using the MISSOVER option
in the INFILE statement? Missing values are indicat ed with colored blocks.

a.

b.

c.

 500

d.

7. Which SAS program correctly reads the data in the r aw data file that is
referenced by the fileref Volunteer?

a. data perm.contest;

b. infile volunteer;

c. input FirstName $ LastName $ Age School $ Class;

d. run;

e. data perm.contest;

f. infile volunteer;

g. length LastName $ 11;

h. input FirstName $ lastname $ Age School $ Class;

i. run;

j. data perm.contest;

k. infile volunteer;

l. input FirstName $ lastname $ Age School $ Class;

m. length LastName $ 11;

n. run;

o. data perm.contest;

p. infile volunteer;

q. input FirstName $ LastName $ 11. Age School $ Cl ass;

r. run;

 501

8. Which type of input should be used to read the valu es in the raw data file that is
referenced by the fileref University?

a. column
b. formatted
c. list
d. modified list

9. Which SAS statement correctly reads the values for Flavor and Quantity ?
Make sure the length of each variable can accommoda te the values that are
shown.

a. input Flavor & $9. Quantity : comma.;

b. input Flavor & $14. Quantity : comma.;

c. input Flavor : $14. Quantity & comma.;

d. input Flavor $14. Quantity : comma.;

10. Which SAS statement correctly reads the raw data va lues in order and assigns
them to these corresponding variables: Year (numeric), School (character),
Enrolled (numeric)?

a. input Year School & $27.

b. Enrolled : comma.;

c. input Year 1-4 School & $27.

d. Enrolled : comma.;

e. input @1 Year 4. +1 School & $27.

f. Enrolled : comma.;
g. all of the above

 502

Answers

1. Correct answer: b

The raw data file contains data that is free format, meaning that the data is not arranged in
columns or fixed fields.

2. Correct answer: c

List input should be used to read data that is free format because you do not need to specify
the column locations of the data.

3. Correct answer: c

You can use the DSD option in the FILE statement to specify that data values containing
commas should be enclosed in quotation marks. The DSD option uses a comma as the
delimiter by default.

4. Correct answer: a

Because the data is free format, list input is used to read the values. With list input, you
simply name each variable and identify its type.

5. Correct answer: d

The INFILE statement identifies the location of the external data file. The DLM= option
specifies the colon (:) as the delimiter that separates each field.

6. Correct answer: a

You can use the MISSOVER option in the INFILE statement to read the missing values at the
end of a record. The MISSOVER option prevents SAS from moving to the next record if
values are missing in the current record.

7. Correct answer: b

The LENGTH statement extends the length of the character variable LastName so that it is
large enough to accommodate the data. Variable attributes such as length are defined the
first time a variable is named in a DATA step. The LENGTH statement should precede the
INPUT statement so that the correct length is defined.

8. Correct answer: d

Notice that the values for School contain embedded blanks, and the values for Enrolled
are nonstandard numeric values. Modified list input can be used to read the values that
contain embedded blanks and nonstandard values.

9. Correct answer: b

The INPUT statement uses list input with format modifiers and informats to read the values
for each variable. The ampersand (&) modifier enables you to read character values that
contain single embedded blanks. The colon (:) modifier enables you to read nonstandard
data values and character values that are longer than eight characters, and that contain no
embedded blanks.

 503

10. Correct answer: d

The values for Year can be read with column, formatted, or list input. However, the values for
School and Enrolled are free-format data that contain embedded blanks or nonstandard
values. Therefore, these last two variables must be read with modified list input.

 504

Chapter 19: Reading Date and Time Values

Overview

Introduction

SAS provides many informats for reading raw data values in various forms. In Chapter 17,
Reading Raw Data in Fixed Fields , you learned how to use informats to read standard and
nonstandard data. In this chapter, you learn how to use a special category of SAS informats
called date and time informats . These informats enable you to read a variety of common date
and time expressions. After you read date and time values, you can also perform calculations
with them.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

Objectives

In this chapter, you learn how
� SAS stores date and time values
� to use SAS informats to read common date and time expressions
� to handle two-digit date values
� to calculate time intervals by subtracting two dates
� to multiply a time interval by a rate
� to display various date and time values.

How SAS Stores Date Values

Before you read date or time values into a SAS data set or use those values in calculations, you
should understand how SAS stores date and time values.

When you use a SAS informat to read a date, SAS converts it to a numeric date value . A SAS
date value is the number of days from January 1, 1960, to the given date.

Here are some examples of how the appropriate SAS informat can convert different expressions
for the date January 2, 2000, to a single SAS date value:

 505

Date Expression SAS Date Informat SAS Date Value

02Jan00 DATEw. 14611

01-02-2000 MMDDYYw. 14611

02/01/00 DDMMYYw. 14611

2000/01/02 YYMMDDw. 14611

Storing dates and times as numeric values enables you to use dates and times in calculations in
much the same way as you would use any other number.

How SAS Stores Time Values

SAS stores time values similar to the way it stores date values. A SAS time value is stored as
the number of seconds since midnight.

A SAS datetime is a special value that combines both date and time information. A SAS datetime
value is stored as the number of seconds between midnight on January 1, 1960, and a given date
and time.

Reading Date and Time Informats

You use SAS date and time informats to read date and time expressions and convert them to
SAS date and time values. Like other SAS informats, date and time informats are composed of

� an informat name
� a field width
� a period delimiter.

SAS informat names indicate the form of date expression that can be read using that particular
informat. Here are some examples of common date and time informats:

� DATEw.
� DATETIMEw.
� MMDDYYw.
� TIMEw.

As you know, there are several ways to write a particular date. For example, all the following
expressions represent the date October 15, 1999. Each of these common date expressions can
be read using the appropriate SAS date informat.

Date Expression SAS Date Informat

10/15/99 MMDDYYw.

15Oct99 DATEw.

10-15-99 MMDDYYw.

99/10/15 YYMMDDw.

 506

Specifying Informats

Using the INPUT statement with an informat after a variable name is the simplest way to read
date and time values into a variable.

General form, INPUT statement with an informat:

INPUT <pointer-control> variable informat.;

where
� pointer-control gives the absolute or relative position of the pointer.
� variable is the name of the variable that is being read.
� informat. is any valid SAS informat. Note that the informat includes a final period.

For example, the following INPUT statement uses two informats:

 input @15 Style $3. @21 Price 5.2;

The $w. character informat ($3.) reads values, starting at column 15 of the raw data, into the
variable Style . The w.d numeric informat (5.2) reads values, starting at column 21, into the
variable Price .

Now let's look at some specific informats that you can use.

MMDDYYw. Informat

You can tell by its name that the informat MMDDYYw. reads date values in the form 10/15/99.

General form, values that are read with the MMDDYY w. informat:

mmddyy or mmddyyyy where
� mm is an integer between 01 and 12, representing the month
� dd is an integer between 01 and 31, representing the day
� yy or yyyy is an integer that represents the year.

In the MMDDYYw. informat, the month, day, and year fields can be separated by blanks or
delimiters such as hyphens (-) or slashes (/). If you use delimiters, you must place them between
all fields in the values. Remember to specify a field width that includes not only the month, day,
and year values, but any delimiters as well. Here are some date expressions that you can read
using the MMDDYYw. informat:

Date Expression SAS Date Informat

101599 MMDDYY6.

10/15/99 MMDDYY8.

10 15 99 MMDDYY8.

10-15-1999 MMDDYY10.

 507

DATEw. Informat

The DATEw. informat reads date values in the form 30May2000.

General form, values that are read with the DATE w. informat:

ddmmmyy or ddmmmyyyy

where
� dd is an integer from 01 to 31, representing the day
� mmm is the first three letters of the month's name
� yy or yyyy is an integer that represents the year.

You can place blanks or other special characters between the day, month, and year, as long as
you increase the width of the informat to include these delimiters. Here are some date
expressions that you can read using the DATEw. informat:

Date Expression SAS Date Informat

30May00 DATE7.

30May2000 DATE9.

30-May-2000 DATE11.

TIMEw. Informat

The TIMEw. informat reads values in the form hh:mm:ss.ss.

General form, values that are read with the TIME w. informat:

hh:mm:ss.ss

where
� hh is an integer from 00 to 23, representing the hour
� mm is an integer from 00 to 59, representing the minute
� ss.ss is an optional field that represents seconds and hundredths of seconds.

If you do not enter a value for ss.ss, a value of zero is assumed. Here are some examples of time
expressions that you can read using the TIMEw. informat:

Time Expression SAS Time Informat

17:00:01.34 TIME11.

17:00 TIME5.

2:34 TIME5.

Warning Notice the last example. The field is only 4 columns

wide, but a w value of 5 is specified. Five is the
minimum acceptable field width for the TIMEw.
informat. If you specify a w value less than 5, you'll

 508

Time Expression SAS Time Informat
receive the foll owing error message in the SAS log:
SAS Log

ERROR 29 - 85: Width specified for
informat

 TIME is invalid.

DATETIMEw. Informat

The DATETIMEw. informat reads expressions that are composed of two parts, a date value and a
time value, in the form: ddmmmyy hh:mm:ss.ss.

General form, values that are read with the DATETIM Ew. informat:

ddmmmyy hh:mm:ss.ss

where
� ddmmmyy is the date value, the same form as for the DATEw. informat
� the time value must be in the form hh:mm:ss.ss
� hh is an integer from 00 to 23, representing the hour
� mm is an integer from 00 to 59, representing the minute
� ss.ss is an optional field that represents seconds and hundredths of seconds
� the date value and time value are separated by a blank or other delimiter.

If you do not enter a value for ss.ss, a value of zero is assumed.

Here are some examples of the DATETIMEw. informat. Note that in the time value, you must use
delimiters to separate the values for hour, minutes, and seconds.

Date and Time Expression SAS Datetime Informat

30May2000:10:03:17.2 DATETIME20.

30May00 10:03:17.2 DATETIME18.

30May2000/10:03 DATETIME15.

YEARCUTOFF= SAS System Option

Recall from Chapter 2, Referencing Files and Setting Options, that the value of the
YEARCUTOFF= system option affects only two-digit year values . A date value that contains a
four-digit year value will be interpreted correctly even if it does not fall within the 100-year span
set by the YEARCUTOFF= system option.

Date Expression SAS Date Informat Interpreted As

06Oct59 date7. 06Oct1959

17Mar1783 date9. 17Mar1783

 509

However, if you specify an inappropriate field width, you will receive incorrect results. Notice that
the date expression in the table below contains a four-digit year value. The informat specifies a w
value that is too small to read the entire value, so the last two digits of the year are truncated.

Date Expression SAS Date Informat Interpreted As

17Mar1783 date7. 17Mar1917

Another problem arises if you use the wrong informat to read a date or time expression. The SAS
log displays an invalid data message, and the variable's values are set to missing.

SAS Log

3 input birthday date8.;

4 run;

NOTE: Invalid data for BIRTHDAY in line 3 1-8.

RULE: ----+----1----+----3----+----4----+----5

3 03/23/98

BIRTHDAY=. _ERROR_=1 _N_=1

When you work with date and time values,
� check the default value of the YEARCUTOFF= system option, and change it if necessary.

The default YEARCUTOFF= value is 1920. Recall that you can use the OPTIONS
procedure to display the current setting of system options.

� specify the proper informat for reading a date value.
� specify the correct field width so that the entire date value is read.

Note Later in this chapter, you'll learn how to work with data values that contain

delimiters.

Using Dates and Times in Calculations

Introduction

In this chapter so far, you've learned how date and time informats read common date and time
expressions in specific forms. Now you will see how converting date and time expressions to
numeric SAS date values can be useful, particularly for determining time intervals or performing
calculations.

Suppose you work in the billing department of a small community hospital. It's your job to create a
SAS data set from the raw data file that is referenced by the fileref Aprdata . A portion of the raw
data file below shows data values that represent each patient's
� last name
� date checked in
� date checked out
� daily room rate
� equipment cost.

 510

The data set that you create must also include variable values that represent how many days
each person stayed in the hospital, the total room charges, and the total of all expenses that each
patient incurred. When building the SAS program, you must first name the data set, identify the
raw data file Aprdata , and use formatted input to read the data.

Example

Warning The following example is shown with the YEARCUTOFF= system option.

When you work with two-digit year data, remember to check the default
value of the YEARCUTOFF= option, and change it if necessary.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8.

Notice that the values in the second and third fields are in the form mmddyy. To complete the
INPUT statement, add instructions to read the values for RoomRate (third field) and EquipCost
(fourth field), and add a semicolon.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

Now that the INPUT statement is complete, calculate how many days each patient was
hospitalized. Because DateIn and DateOut are numeric variables, you can simply subtract to
find the difference. But because the dates should be inclusive (patients are charged for both the
first and last days), you must add 1 to the difference. Call this new variable Days .

options yearcutoff=1920;

 data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 D ateOut

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

Days=dateout-datein+1;

You can calculate a total room charge by multiplying the variable values for Days and RoomRate.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 511

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

Calculating the total cost for each patient is easy. Create a variable named Total whose value is
the sum of RoomCharge and EquipCost . Then add a PROC PRINT step and a RUN statement
to view the new data.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

proc print data=perm.aprbills;

run;

O
bs

LastNa
me

Dat
eIn

Date
Out

RoomR
ate

EquipC
ost

Da
ys

RoomCh
arge

Total

1 Akron 1433
9

14343 175 298.45 5 875 1173.
45

2 Brown 1434
6

14365 125 326.78 20 2500 2826.
78

3 Carnes 1436
1

14363 125 174.24 3 375 549.2
4

4 Deniso
n

1434
5

14346 175 87.41 2 350 437.4
1

5 Fields 1434
9

14356 175 378.96 8 1400 1778.
96

6 Jamiso
n

1435
0

14357 125 346.28 8 1000 1346.
28

If the values for DateIn and DateOut look odd to you, remember that these are SAS date
values. Applying a format such as MMDDYY8. displays them as they appeared in Aprdata . You'll
work with some other date and time formats later in this chapter.

Follow the execution of the program that you've written. When the DATA step executes, the
values for DateIn and DateOut are converted to SAS date values.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 512

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

After the rest of the INPUT statement executes, the value for Days is created by subtracting the
SAS date value for DateIn from the value for DateOut and then adding 1.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

The value for RoomCharge is calculated next. RoomCharge is the product of Days and
RoomRate.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

 513

The value for Total is the final calculation. Total is the sum of EquipCost and RoomCharge.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

Using Date and Time Formats

Remember that when Perm.Aprbills is printed, the values for DateIn and DateOut appear as
SAS date values.

options yearcutoff=1920;

data perm.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

run;

proc print data=perm.aprbills;

run;

 514

O
bs

LastNa
me

Dat
eIn

Date
Out

RoomR
ate

EquipC
ost

Da
ys

RoomCh
arge

Total

1 Akron 1433
9

14343 175 298.45 5 875 1173.
45

2 Brown 1434
6

14365 125 326.78 20 2500 2826.
78

3 Carnes 1436
1

14363 125 174.24 3 375 549.2
4

4 Deniso
n

1434
5

14346 175 87.41 2 350 437.4
1

5 Fields 1434
9

14356 175 378.96 8 1400 1778.
96

6 Jamiso
n

1435
0

14357 125 346.28 8 1000 1346.
28

SAS provides many specialized date and time formats that enable you to specify how date and
time values are displayed and stored. Let's take a closer look at two date formats: WEEKDATEw.
and WORDDATEw.

The WEEKDATE w. Format

You can use the WEEKDATEw. format to write these values out in a format that displays the day
of the week, month, day, and year.

General form, WEEKDATE w. format:

WEEKDATEw.

The WEEKDATEw. format writes date values in the form day-of-week, month-name dd, yy (or
yyyy).

where
� dd is an integer between 01 and 31, representing the day
� yy or yyyy is an integer that represents the year.

Note If the w value is too small to write the complete day of the week and month,

SAS abbreviates as needed.

proc print data=perm.aprbills;

 format datein dateout weekdate17.;

run;

 515

O
bs

LastNa
me

Dat
eIn

Date
Out

RoomR
ate

EquipC
ost

Da
ys

RoomCh
arge

Total

1 Akron Mon,
Apr

5,
1999

Fri,
Apr 9,
1999

175 298.45 5 875 1173.
45

2 Brown Mon,
Apr
12,

1999

Sat,
May

1,
1999

125 326.78 20 2500 2826.
78

3 Carnes Tue,
Apr
27,

1999

Thu,
Apr
29,

1999

125 174.24 3 375 549.2
4

4 Deniso
n

Sun,
Apr
11,

1999

Mon,
Apr
12,

1999

175 87.41 2 350 437.4
1

5 Fields Thu,
Apr
15,

1999

Thu,
Apr
22,

1999

175 378.96 8 1400 1778.
96

6 Jamiso
n

Fri,
Apr
16,

1999

Fri,
Apr
23,

1999

125 346.28 8 1000 1346.
28

You can vary the results by changing the w value in the format.

FORMAT Statement Result

format datein weekdate3.; Mon

format datein weekdate6.; Monday

format datein weekdate17.; Monday, Apr 5, 99

format datein weekdate21.; Monday, April 5, 1999

The WORDDATEw. Format

The WORDDATEw. format is similar to the WEEKDATEw. format, but it does not display the day
of the week or the two-digit year values.

General form, WORDDATE w. format:

WORDDATEw.

The WORDDATEw. format writes date values in the form month-name dd, yyyy.

where

 516

� dd is an integer between 01 and 31, representing the day
� yyyy is an integer that represents the year.

Note If the w value is too small to write the complete month, SAS abbreviates as

needed.

proc print data=perm.aprbills;

 format datein dateout worddate12.;

run;

O
bs

LastNa
me

Dat
eIn

Date
Out

RoomR
ate

EquipC
ost

Da
ys

RoomCh
arge

Total

1 Akron Apr
5,

1999

Apr 9,
1999

175 298.45 5 875 1173.
45

2 Brown Apr
12,

1999

May
1,

1999

125 326.78 20 2500 2826.
78

3 Carnes Apr
27,

1999

Apr
29,

1999

125 174.24 3 375 549.2
4

4 Deniso
n

Apr
11,

1999

Apr
12,

1999

175 87.41 2 350 437.4
1

5 Fields Apr
15,

1999

Apr
22,

1999

175 378.96 8 1400 1778.
96

6 Jamiso
n

Apr
16,

1999

Apr
23,

1999

125 346.28 8 1000 1346.
28

You can vary the results by changing the w value in the format.

FORMAT Statement Result

format datein worddate3.; Apr

format datein worddate5.; April

format datein worddate14.; April 15, 1999

Remember that you can permanently assign a format to variable values by including a FORMAT
statement in the DATA step.

options yearcutoff=1920;

data work.aprbills;

 infile aprdata;

 input LastName $8. @10 DateIn mmddyy8. +1 DateOu t

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

 Days=dateout-datein+1;

 517

 RoomCharge=days*roomrate;

 Total=roomcharge+equipcost;

 format datein dateout worddate12.;

run;

proc print data=work.aprbills;

run;

Summary

Text Summary

How SAS Stores Date and Time Values

SAS stores date values as numeric SAS date values , which are the number of days from
January 1, 1960. SAS time values are the number of seconds since midnight.

Reading Dates and Times with Informats

Use SAS informats to read date and time expressions and convert them to SAS date and time
values.
� MMDDYYw. reads dates such as 053090, 05/30/90, or 05 30 1990.
� DATEw. reads dates such as 30May1990, 30May90, or 30-May-1990.
� TIMEw. reads times such as 17:00, 17:00:01.34, or 2:34.
� DATETIMEw. reads dates and times such as 30May1990:10:03:17.2, 30May90

10:03:17.2, or 30May1990/10:03.

Two-digit year values require special consideration. When a two-digit year value is read, SAS
defaults to a year within a 100-year span that is determined by the YEARCUTOFF= system
option. The default value of YEARCUTOFF= is 1920. You can check or reset the value of this
option in your SAS session to use a different 100-year span for date informats.

Using Dates and Times in Calculations

Date and time values can be used in calculations like other numeric values. In addition to tracking
time intervals, SAS date and time values can be used with SAS functions and with complex
calculations.

Using Date and Time Formats

SAS provides many specialized date and time formats that enable you to specify how date and
time values are displayed and stored. You can use the WEEKDATEw. format to write date values
in the form day-of-week, month-name dd, yy (or yyyy). You can use the WORDDATEw. format to
write date values in the form month-name dd, yyyy.

Points to Remember
� SAS makes adjustments for leap years, but not for leap seconds or daylight saving time.
� The minimum acceptable field width for the TIMEw. informat is 5. If you specify a w value

less than 5, you'll receive an error message in the SAS log.
� The default value of the YEARCUTOFF= option is 1920. When you work with two-digit

year data, remember to check the default value of the YEARCUTOFF= option, and change it
if necessary.

 518

� The value of the YEARCUTOFF= system option does not affect four-digit year values.
Four-digit values are always read correctly.

� Be sure to specify the proper informat for reading a date value, and specify the correct
field width so that the entire value is read.

� If SAS date values appear in your program output, use a date format to display them in
legible form.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. SAS date values are the number of days since which date?
a. January 1, 1900
b. January 1, 1950
c. January 1, 1960
d. January 1, 1970

2. A great advantage of storing dates and times as SAS numeric date and time
values is that

a. they can easily be edited.
b. they can easily be read and understood.
c. they can be used in text strings like other char acter values.
d. they can be used in calculations like other nume ric values.

3. SAS does not automatically make adjustments for day light saving time, but it
does make adjustments for

a. leap seconds
b. leap years
c. Julian dates
d. time zones

4. An input data file has date expressions in the form 10222001. Which SAS
informat should you use to read these dates?

a. DATE6.
b. DATE8.
c. MMDDYY6.
d. MMDDYY8.

5. The minimum width of the TIME w. informat is
a. 4
b. 5
c. 6
d. 7

6. Shown below are date and time expressions and corre sponding SAS datetime
informats. Which date and time expresssion cannot b e read by the informat that
is shown beside it?

a. 30May2000:10:03:17.2 DATETIME20.
b. 30May00 10:03:17.2 DATETIME18.
c. 30May2000/10:03 DATETIME15.
d. 30May2000/1003 DATETIME14.

7. What is the default value of the YEARCUTOFF= system option?

 519

a. 1920
b. 1910
c. 1900
d. 1930

8. Suppose your input data file contains the date expr ession 13APR2009. The
YEARCUTOFF= system option is set to 1910. SAS will read the date as

a. 13APR1909
b. 13APR1920
c. 13APR2009
d. 13APR2020

9. Suppose the YEARCUTOFF= system option is set to 192 0. An input file contains
the date expression 12/08/1925, which is being read with the MMDDYY8.
informat. Which date will appear in your data?

a. 08DEC1920
b. 08DEC1925
c. 08DEC2019
d. 08DEC2025

10. Suppose your program creates two variables from an input file. Both variables
are stored as SAS date values: FirstDay records the start of a billing cycle, and
LastDay records the end of that cycle. The code for calculating the total number
of days in the cycle would be

a. TotDays=lastday-firstday;
b. TotDays=lastday-firstday+1;
c. TotDays=lastday/firstday;
d. You cannot use date values in calculations.

Answers

1. Correct answer: c

A SAS date value is the number of days from January 1, 1960, to the given date.

2. Correct answer: d

In addition to tracking time intervals, SAS date and time values can be used in calculations
like other numeric values. This lets you calculate values that involve dates much more easily
than in other programming languages.

3. Correct answer: b

SAS automatically makes adjustments for leap years.

4. Correct answer: d

The SAS informat MMDDYYw. reads dates such as 10222001, 10/22/01, or 10-22-01. In this
case, the field width is eight.

5. Correct answer: b

The minimum acceptable field width for the TIMEw. informat is five. If you specify a w value
less than five, you will receive an error message in the SAS log.

 520

6. Correct answer: d

In the time value of a date and time expression, you must use delimiters to separate the
values for hour, minutes, and seconds.

7. Correct answer: a

The default value of YEARCUTOFF= is 1920. This enables you to read two-digit years from
00-19 as the years 2000 through 2019.

8. Correct answer: c

The value of the YEARCUTOFF= system option does not affect four-digit year values. Four-
digit values are always read correctly.

9. Correct answer: c

The w value of the informat MMDDYY8. is too small to read the entire value, so the last two
digits of the year are truncated. The last two digits thus become 19 instead of 25. Because
the YEARCUTOFF= system option is set to 1920, SAS interprets this year as 2019. To avoid
such errors, be sure to specify an informat that is wide enough for your date expressions.

10. Correct answer: b

To find the number of days spanned by two dates, subtract the first day from the last day and
add one. Because SAS date values are numeric values, they can easily be used in
calculations.

 521

Chapter 20: Creating a Single Observation from
Multiple Records

Overview

Introduction

Information for one observation can be spread out over several records. You can write multiple
INPUT statements to read each record that comprises a single observation, as in this example:

Or, you can write one INPUT statement that contains a line pointer control to specify the record(s)
from which values are to be read, as in this example:

Objectives

In this chapter, you learn to
� read multiple records sequentially and create a single observation
� read multiple records non-sequentially and create a single observation.

Use Line Pointer Controls

You know that as SAS reads raw data values, it keeps track of its position with an input pointer.
You have used column pointer controls and column specifications to determine the column
placement of the input pointer.

Column
Specifications

input Name $ 1-12 Age 15-16 Gender $ 18;

Column Pointer
Controls

input Name $12. @15 Age 2. @18 Gender $1.;

But you can also position the input pointer on a specific record by using a line pointer control in
the INPUT statement.

 input #2 Name $ 1-12 Age 15-16 Gender $ 18;

 522

There are two types of line pointer controls.
� The forward slash (/) specifies a line location that is relative to the current one.
� The #n specifies the absolute number of the line to which you want to move the pointer.

First we'll look at the forward slash (/). Later in this chapter, you'll learn how to use the #n, and
you will see how these two controls can be combined.

Reading Multiple Records Sequentially

The Forward Slash (/) Line Pointer Control

You use the forward slash (/) line pointer control to read multiple records sequentially. The /
advances the input pointer to the next record. The / line pointer control only moves the input
pointer forward and must be specified after the instructions for reading the values in the current
record.

The single INPUT statement below reads the values for Lname and Fname in the first record,
followed by the values for Department and JobCode in the second record. Then the value for
Salary is read in the third record.

Take a closer look at using the forward slash (/) line pointer control in the following example.

The raw data file Memdata contains the mailing list of a professional organization. Your task is to
combine the information for each member into one data set observation. We'll begin by reading
each member's name, followed by the street address, and finally the city, state, and zip code.

� As you write the instructions to read the values for Fname and Lname, notice that not all
of the values for Lname begin in the same column. So, you should use standard list input
to read these values.

 523

� Now you want to read the values for Address from the second record. The / line pointer
control advances the input pointer to the next record. At this point the INPUT statement is
incomplete, so you should not place a semicolon after the line pointer control.

� You can use column input to read the values in the next record as one variable named
Address . Then add a line pointer control to move the input pointer to the next record.

� As you write the statements to read the values for City , notice that one of the values is
longer than eight characters and contains embedded blanks. Also note that each value is
followed by two consecutive blanks. To read these values, you should use modified list
input with the ampersand (&) modifier.

The values for State and the values for Zip do not begin in the same column. Therefore,
you should use list input to read these values.

Sequential Processing of Multiple Records in the DA TA Step

Now that you've learned the basics of using the / line pointer control, let's take a closer look at the
sequential processing of multiple records in the DATA step.

During compilation, the program data vector is created for the Perm.Members data set. When
the DATA step executes, the values in the first record are read, and the / line pointer control
moves the input pointer to the second record.

 524

The values for Address are read, and the second / line pointer control advances the input pointer
to the third record.

The values for City, State, and Zip are read, and the INPUT statement is completely executed.

The values in the program data vector are written to the data set as the first observation.

Control returns to the top of the DATA step, and the variable values are reinitialized to missing.

During the second iteration, values for Fname and Lname are read beginning in column one of
the fourth record.

 525

The values for Address are read and the / line pointer control advances the input pointer to the
fifth record.

The values for City, State, and Zip are read, and the INPUT statement is completely executed.

The values in the program data vector are written to the data set as the second observation.

After the data set is complete, PROC PRINT output for Perm.Members shows that a single
observation contains the complete information for each member.

proc print data=perm.members;

run;

Obs Fname Lname Address City State Zip

1 LEE ATHNOS 1215 RAINTREE
CIRCLE

PHOENIX AZ 85044

 526

Obs Fname Lname Address City State Zip

2 HEIDIE BAKER 1751 DIEHL ROAD VIENNA VA 22124

3 MYRON BARKER 131 DONERAIL
DRIVE

ATLANTA GA 30363

4 JOYCE BENEFIT 85 MAPLE AVENUE MENLO
PARK

CA 94025

Number of Records Per Observation

Note that the raw data file must contain the same number of records for each observation that
is being created.

For example, suppose there are only two records for the second member. However, the INPUT
statement is set up to read three records.

The second member's name and address are read and assigned to corresponding variables.
Then the input pointer advances to the next record, as directed by the INPUT statement, and the
third member's name is read as a value for City.

The DATA step is still looking for a value for State and Zip, so the input pointer advances to the
next record and reads the values for the member's address.

The PROC PRINT output for this data set illustrates the problem.

Obs Fname Lname Address City State Zip

1 LEE ATHNOS 1215
RAINTRE
E
CLRCLE

PHOENIX AZ 85044

2 HEIDIE BAKER 1751
DIEHL
ROAD

MYRON
BARK

131 DONERAIL

3 ATLANTA GA JOYCE
BENEFIT

85
MAPLE A

MENLO PARK

So, before you write the INPUT statement, ensure that the raw data file contains the same
number of records for each observation.

 527

Note For more information about working with raw data files that contain missing

records, see the SAS documentation.

Reading Multiple Records Non-Sequentially

The #n Line Pointer Control

You already know how to read multiple records sequentially by using the / line pointer control.
Now let's look at reading multiple records non-sequentially by using the #n line pointer control.

The #n specifies the absolute number of the line to which you want to move the input pointer. The
#n pointer control can read records in any order; therefore, it must be specified before the
instructions for reading values in a specific record.

The INPUT statement below first reads the values for Department and JobCode in the second
record, then the values for Lname and Fname in the first record. Finally, it reads the value for
Salary in the third record.

Example: Using the # n Line Pointer Control

Take a closer look at using the #n line pointer control in the following example.

 528

The raw data file Patdata contains information about the patients of a small group of general
surgeons.

The first three records contain a patient's name, address, city, state, and zip code. The fourth
record contains the patient's ID number followed by the name of the primary physician.

Suppose you want to read each patient's information in the following order:
1. ID number (ID)
2. first name (Fname)
3. last name (Lname)
4. address (Address)
5. city (City)
6. state (State)
7. zip (Zip)
8. doctor (Doctor)

� To read the values for ID in the fourth record, specify #4 before naming the variable and
defining its attributes.

� To read the values for Fname and Lname in the first record, specify #1 before naming the
variables and defining their attributes.

� Use the #n line pointer control to move the input pointer to the second record and read
the value for Address .

� Now move the input pointer to the third record and read the values for City , State , and
Zip, in that order.

Note In this raw data file, the values for City contain eight or fewer characters and

do not contain embedded blanks. So, you can use standard list input to read
these values.

� Now you need to move the input pointer down to the fourth record to read the values for

Doctor , which begin in column 7. Don't forget to add a semicolon at the end of the INPUT
statement. A RUN statement completes the program.

 529

Execution of the DATA Step

The #n pointer controls in the program below cause four records to be read for each execution of
the DATA step.

data perm.patients;

 infile patdata;

 input #4 ID $5.

 #1 Fname $ Lname $

 #2 Address $23.

 #3 City $ State $ Zip $

 #4 @7 Doctor $6.;

run;

The first time the DATA step executes, the first four records are read, and an observation is
written to the data set.

During the second iteration, the next four records are read, and the second observation is written
to the data set, and so on.

The PROC PRINT output of the data set shows how information that was spread over several
records has been condensed into one observation.

 proc print data=perm.patients noobs;

 run;

ID Fname Lname Address City Stat
e

Zip Doctor

XM03
4

ALEX BEDWAN 609
WILTON
MEADOW

GARNE
R

NC 2752
9

FLOYD

 530

ID Fname Lname Address City Stat
e

Zip Doctor

DRIVE

XF12
4

ALISON BEYER 8521
HOLLY
SPRINGS
ROAD

APEX NC 2750
2

LAWSO
N

XF23
2

LISA BONNER 109
BRAMPT
ON
AVENUE

CARY NC 2751
1

LAWSO
N

XM06
5

GEORG
E

CHESSO
N

3801
WOODSI
DE
COURT

GARNE
R

NC 2752
9

FLOYD

Combining Line Pointer Controls

The forward slash (/) line pointer control and the #n line pointer control can be used together in a
SAS program to read multiple records both sequentially and non-sequentially.

For example, you could use both the / line pointer control and the #n line pointer control to read
the variables in the raw data file Patdata in the following order:

1. ID 5. City

2. Fname 6. State

3. Lname 7. Zip

4. Address 8. Doctor

� To read the values for ID in the fourth record, specify #4 before naming the variable and

defining its attributes.
� Specify #1 to move the input pointer back to the first record, where the values for Fname

and Lname are read.
� Because the next record to be read is sequential, you can use the / line pointer control

after the variable Lname to move the input pointer to the second record, where the value
for Address is read.

� The / line pointer control in the next line directs the input pointer to the third record, where
the values for City , State, and Zip are read.

� The final / line pointer control moves the input pointer back to the fourth record, where the
value for Doctor is read.

Note Alternatively, you can use only the #n line pointer control (as shown earlier in

this chapter and below) to read the variables in the order shown above.

 531

Summary

Text Summary

Multiple Records Per Observation

Information for one observation can be spread out over several records. You can write one
INPUT statement that contains line pointer controls to specify the records from which values are
read.

Reading Multiple Records Sequentially

The forward slash (/) line pointer control is used to read multiple records sequentially. Each time a
/ pointer is encountered, the input pointer advances to the next line.

Reading Multiple Records Non-Sequentially

The #n line pointer control is used to read multiple records non-sequentially. The #n specifies the
absolute number of the line to which you want to move the pointer.

Combining Line Pointer Controls

The / line pointer control and the #n line pointer control can be combined within a SAS program to
read multiple records both sequentially and non-sequentially.

Points to Remember
� When a file contains multiple records per observation, the file must contain the same

number of records for each observation that is being created.
� Because the / pointer control can only move forward, the pointer control is specified after

the values in the current record are read.
� The #n pointer control can read records in any order and must be specified before the

variable names are defined.
� A semicolon should be placed at the end of the complete INPUT statement.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. You can position the input pointer on a specific re cord by using
a. column pointer controls.
b. column specifications.
c. line pointer controls.
d. line hold specifiers.

 532

2. Which pointer control is used to read multiple reco rds sequentially?
a. @n
b. +n
c. /
d. all of the above

3. Which pointer control can be used to read records n on-sequentially?
a. @n
b. #n
c. +n
d. /

4. Which SAS statement correctly reads the values for Fname, Lname , Address ,
City , State , and Zip in order?

a. input Fname $ Lname $ /

b. Address $20. /

c. City $ State $ Zip $;

d. input Fname $ Lname $ /;

e. Address $20. /;

f. City $ State $ Zip $;

g. input / Fname $ Lname $

h. / Address $20.

i. City $ State $ Zip $;

j. input / Fname $ Lname $;

k. / Address $20.;

l. City $ State $ Zip $;

5. Which INPUT statement correctly reads the values fo r ID in the fourth record,
then returns to the first record to read the values for Fname and Lname?

a. input #4 ID $5.

 533

b. #1 Fname $ Lname $;

c. input #4 ID $ 1-5

d. #1 Fname $ Lname $;

e. input #4 ID $

f. #1 Fname $ Lname $;
g. all of the above

6. How many records will be read for each iteration of the DATA step?

data spring.sportswr;

 infile newitems;

 input #1 Item $ Color $

 #3 @8 Price comma6.

 #2 Fabric $

 #3 SKU $ 1-6;

run;
a. one
b. two
c. three
d. four

7. Which INPUT statement correctly reads the values fo r City , State , and Zip ?

a. input #3 City $ State $ Zip $;
b. input #3 City & $11. State $ Zip $;
c. input #3 City $11. +2 State $2. + 2 Zip $5.;
d. all of the above

 534

8. Which program does not read the values in the first record as a variable named
Item and the values in the second record as two variabl es named Inventory
and Type ?

a. data perm.supplies;

b. infile instock pad;

c. input Item & $16. /

d. Inventory 2. Type $8.;

e. run;

f. data perm.supplies;

g. infile instock pad;

h. input Item & $16.

i. / Inventory 2. Type $8.;

j. run;

k. data perm.supplies;

l. infile instock pad;

m. input #1 Item & $16.

n. Inventory 2. Type $8.;

o. run;

p. data perm.supplies;

q. infile instock pad;

r. input Item & $16.

s. #2 Inventory 2. Type $8.;

t. run;

9. Which INPUT statement reads the values for Lname, Fname , Department , and
Salary (in that order)?

a. input #1 Lname $ Fname $ /

b. Department $12. Salary comma10.;

 535

c. input #1 Lname $ Fname $ /

d. Department : $12. Salary : comma.;

e. input #1 Lname $ Fname $

f. #2 Department : $12. Salary : comma.;
g. both b and c

10. Which raw data file poses potential problems when y ou are reading multiple
records for each observation?

a.

b.

c.

d.

Answers

1. Correct answer: c

 536

Information for one observation can be spread out over several records. You can write one
INPUT statement that contains line pointer controls to specify the records from which values
are read.

2. Correct answer: c

The forward slash (/) line pointer control is used to read multiple records sequentially. Each
time a / pointer is encountered, the input pointer advances to the next line. @n and +n are
column pointer controls.

3. Correct answer: b

The #n line pointer control is used to read records non-sequentially. The #n specifies the
absolute number of the line to which you want to move the pointer.

4. Correct answer: a

The INPUT statement uses the / line pointer control to move the input pointer forward from
the first record to the second record, and from the second record to the third record. The / line
pointer control only moves the input pointer forward and must be specified after the
instructions for reading the values in the current record. You should place a semicolon only at
the end of a complete INPUT statement.

5. Correct answer: d

The first #n line pointer control enables you to read the values for ID from the fourth record.
The second #n line pointer control moves back to the first record and reads the values for
Fname and Lname. You can use formatted input, column input, or list input to read the values
for ID .

6. Correct answer: c

The first time the DATA step executes, the first three records are read, and an observation is
written to the data set. During the second iteration, the next three records are read, and the
second observation is written to the data set. During the third iteration, the last three records
are read, and the final observation is written to the data set.

7. Correct answer: b

A combination of modified and simple list input can be used to read the values for City ,
State , and Zip . You need to use modified list input to read the values for City , because
one of the values is longer than eight characters and contains an embedded blank. You
cannot use formatted input, because the values do not begin and end in the same column in
each record.

8. Correct answer: c

The values for Item in the first record are read, then the following / or #n line pointer control
advances the input pointer to the second record to read the values for Inventory and Type .

9. Correct answer: d

You can use either the / or #n line pointer control to advance the input pointer to the second
line, in order to read the values for Department and Salary . The colon (:) modifier is used

 537

to read the character values that are longer than eight characters (Department) and the
nonstandard data values (Salary).

10. Correct answer: c

The third raw data file does not contain the same number of records for each observation, so
the output from this data set will show invalid data for the ID and salary information in the
fourth line.

 538

Chapter 21: Creating Multiple Observations from a
Single Record

Overview

Introduction

Sometimes raw data files contain data for several observations in one record. Data is stored in
this manner to reduce the size of the entire data file.

Each record can contain
� repeating blocks of data that represent separate observations

� an ID field followed by an equal number of repeating fields that represent separate

observations

� an ID field followed by a varying number of repeating fields that represent separate

observations.

This chapter shows you several ways of creating multiple observations from a single record.

Objectives

In this chapter, you learn to
� create multiple observations from a single record that contains repeating blocks of data
� create multiple observations from a single record that contains one ID field followed by

the same number of repeating fields
� create multiple observations from a single record that contains one ID field followed by a

varying number of repeating fields.

Additionally, you learn to
� hold the current record across iterations of the DATA step
� hold the current record for the next INPUT statement
� execute SAS statements based on a variable's value
� explicitly write an observation to a data set
� execute SAS statements while a condition is true.

Reading Repeating Blocks of Data

 539

Each record in the file Tempdata contains three blocks of data. Each block contains a date
followed by the day's high temperature in a small city that is located in the southern United
States.

You could write a DATA step that reads each record and creates three different Date and Temp
variables.

SAS Data Set

Date1 Temp1 Date2 Temp2 Date3 Temp3

11048 68 11049 67 11050 70

But if you create a separate observation for each block of data in a record, you can later use
several statistical procedures to analyze the data for each day.

SAS Data Set

Date HighTemp

11048 68

11049 67

11050 70

Holding the Current Record with a Line-Hold Specifi er

As you begin to write the INPUT statement, you need to hold the current record until each block
of data has been read and written to the data set as an observation. This is easily accomplished
by using a line-hold specifier in the INPUT statement.

SAS provides two line-hold specifiers.
� The trailing at sign (@) holds the input record for the execution of the next INPUT

statement.
� The double trailing at sign (@@) holds the input record for the execution of the next

INPUT statement, even across iterations of the DATA step.

The term trailing indicates that the @ or @@ must be the last item that is specified in the INPUT
statement. Here is an example:

 input Name $20. @; or input Name $20. @@;

 540

This chapter teaches you how the trailing @@ can be used to hold a record across multiple
iterations of the DATA step.

Using the Double Trailing At Sign (@) to Hold the C urrent Record

Typically, each time a DATA step executes, the INPUT statement reads a new record. But when
you use the trailing @@, the INPUT statement holds the current record and reads the next value.

The double trailing at sign (@@)
� works like the trailing @ except it also holds the data line in the input buffer across

multiple executions of the DATA step
� typically is used to read multiple SAS observations from a single data line
� should not be used with the @ pointer control, with column input, nor with the

MISSOVER option.

A record that is being held by the double trailing at sign (@@) is not released until one of the
following events occurs:
� the input pointer moves past the end of the record. Then the input pointer moves down to

the next record.

� an INPUT statement that has no line-hold specifier executes.

� input ID $ @@;

� .

� .

� input Department 5.;

This example requires only one INPUT statement to read the values for Date and HighTemp , but
the INPUT statement must execute three times for each record.

The INPUT statement reads a block of values for Date and HighTemp , and then holds the
current record by using the trailing @@. The values in the program data vector are written to the
data set as an observation, and control returns to the top of the DATA step.

data perm.april90;

 infile tempdata;

 input Date : date. HighTemp @@;

 541

In the next iteration, the INPUT statement reads the next block of values for Date and HighTemp
from the same record.

Completing the DATA Step

You can add a FORMAT statement to the DATA step to display the date or time values with a
format that you specify in the data set. In the FORMAT statement below, the DATEw. format is
used to display the values for Date in the form ddmmmyyyy .

data perm.april90;

 infile tempdata;

 input Date : date. HighTemp @@;

 format date date9.;

run;

DATA Step Processing of Repeating Blocks of Data

Here is the complete DATA step.

data perm.april90;

 infile tempdata;

 input Date : date. HighTemp @@;

 format date date9.;

run;

Example

As the execution phase begins, the input pointer rests on column 1 of record 1.

 542

During the first iteration of the DATA step, the first block of values for Date and HighTemp are
read and stored in the program data vector.

The first observation is written to the data set, control returns to the top of the DATA step, and
values are reset to missing.

 543

During the second iteration, the @@ prevents the input pointer from moving down to column 1 of
the next record.

The INPUT statement reads the second block of values for Date and HighTemp in the first
record.

The second observation is written to the data set, and control returns to the top of the DATA step.

 544

During the third iteration, the last block of values is read and written to the data set as the third
observation. Control returns to the top of the DATA step, and values are reset to missing.

During the fourth iteration, the first block of values in the second record is read and written as the
fourth observation. Control returns to the top of the DATA step, and values are reset to missing.

 545

The execution phase continues until the last block of data is read.

You can display the data set with the PRINT procedure.

 proc print data=perm.april90;

 run;

Obs Date HighTemp

1 01APR1990 68

 546

Obs Date HighTemp

2 02APR1990 67

3 03APR1990 70

4 04APR1990 74

5 05APR1990 72

6 06APR1990 73

7 07APR1990 71

8 08APR1990 75

9 09APR1990 76

10 10APR1990 78

11 11APR1990 70

12 12APR1990 69

13 13APR1990 71

14 14APR1990 71

15 15APR1990 74

Reading the Same Number of Repeating Fields

So far you have created multiple observations from a single record by executing the DATA step
once for each block of data in a record.

Now look at another file that is organized differently.

Each record in the file Data97 contains a sales representative's ID number, followed by four
repeating fields that represent his or her quarterly sales totals for 1997.

You want to pair each sales representative’s ID number with one quarterly sales total to produce
a single observation. That way, four observations can be derived from one record.

 547

To accomplish this, you must execute the DATA step once for each record, repetitively reading
and writing values in one iteration.

This means that a DATA step must
� read the value for ID and hold the current record
� create a new variable named Quarter to identify the fiscal quarter for each sales figure
� read a new value for Sales and write the values to the data set as an observation
� continue reading a new value for Sales and writing values to the data set three more

times.

Using the Single Trailing At Sign (@) to Hold the C urrent Record

First, you need to read the value for ID and hold the record so that subsequent values for Sales
can be read.

data perm.sales97;

 infile data97;

 input ID $

You are already familiar with the double trailing @@, which holds the current record across
multiple iterations of the DATA step.

However, in this case, you want to hold the record with the trailing @ line-hold specifier so that a
second INPUT statement can read the values for Sales within the same iteration of the DATA
step. Like the double trailing @@, the single trailing @

� enables the next INPUT statement to read from the same record
� releases the current record when a subsequent INPUT statement executes without a line-

hold specifier.

It's easy to distinguish between the trailing @@ and the trailing @ by remembering that
� the double trailing at sign (@@) holds a record across multiple iterations of the DATA

step until the end of the record is reached.
� the single trailing at sign (@) releases a record when control returns to the top of the

DATA step.

In this example, the first INPUT statement reads the value for ID and uses the trailing @ to hold
the current record for the next INPUT statement in the DATA step.

 548

data perm.sales97;

 infile data97;

 input ID $ @;

 input Sales : comma. @;

 output;

The second INPUT statement reads a value for Sales and holds the record. The COMMAw.d
informat in the INPUT statement reads the numeric value for Sales and removes the embedded
commas. An OUTPUT statement writes the observation to the SAS data set, and the DATA step
continues processing.

Note Notice that the COMMAw.d informat does not specify a w value. Remember

that list input reads values until the next blank is detected. The default length of
numeric variables is 8 bytes, so you don't need to specify a w value to
determine the length of a numeric variable.

When all of the repeating fields have been read and sent to output, control returns to the top of
the DATA step, and the record is released.

data perm.sales97;

 infile data97;

 input ID $ @;

 input Sales : comma. @;

 output;

 input Sales : comma. @;

 output;

 input Sales : comma. @;

 output;

 input Sales : comma. @;

 output;

run;

More Efficient Programming

Each record contains four different values for the variable Sales , so the INPUT statement must
execute four times. Rather than writing four INPUT statements, you can execute one INPUT
statement repeatedly in an iterative DO loop.

Each time the loop executes, you need to write the values for ID , Quarter , and Sales as an
observation to the data set. This is easily accomplished by using the OUTPUT statement.

data perm.sales97;

 infile data97;

 549

 input ID $ @;

 do Quarter=1 to 4;

 input Sales : comma. @;

 output;

 end;

run;

By default, every DATA step contains an implicit OUTPUT statement at the end of the step.
Placing an explicit OUTPUT statement in a DATA step overrides the automatic output, and SAS
adds an observation to a data set only when the explicit OUTPUT statement is executed.

Processing a DATA Step That Contains an Iterative D O Loop

Now that the program is complete, let's see how SAS processes a DATA step that contains an
iterative DO loop.

data perm.sales97;

 infile data97;

 input ID $ @;

 do Quarter=1 to 4;

 input Sales : comma. @;

 output;

 end;

run;

During the first iteration, the value for ID is read and Quarter is initialized to 1, so the loop
begins to execute.

The INPUT statement reads the first repeating field and assigns the value to Sales in the
program data vector. The @ holds the current record.

The OUTPUT statement writes the values in the program data vector to the data set as the first
observation.

 550

The END statement indicates the bottom of the loop, but control returns to the DO statement, not
to the top of the DATA step. Now the value of Quarter is incremented to 2.

The INPUT statement executes again, reading the second repeating field and storing the value
for Sales in the program data vector.

The OUTPUT statement writes the values in the program data vector as the second observation.

The loop continues executing while the value for Quarter is 3, then 4. In the process, the third
and fourth observations are created.

 551

After the fourth observation is created, Quarter is incremented to 5 at the bottom of the DO loop
and control returns to the top of the loop. The loop does not execute again because the value of
Quarter is now greater than 4.

The RUN statement executes. Control returns to the top of the DATA step, and the input pointer
moves to column 1 of the next record. The variable values in the program data vector are reset to
missing. Notice that SAS is reading the second record from the original file but has created four
observations in the new SAS data set.

When the execution phase is complete, you can display the data set with the PRINT procedure.

proc print data=perm.sales97;

run;

Obs ID Quarter Sales

1 0734 1 1323.34

2 0734 2 2472.85

3 0734 3 3276.65

4 0734 4 5345.52

5 0943 1 1908.34

6 0943 2 2560.38

7 0943 3 3472.09

8 0943 4 5290.86

9 1009 1 2934.12

 552

Obs ID Quarter Sales

10 1009 2 3308.41

11 1009 3 4176.18

12 1009 4 7581.81

Reading a Varying Number of Repeating Fields

So far each record in the file Data97 has contained the same number of repeating fields.

But suppose some of the employees quit after the first quarter. Records that contain information
for those employees might not contain sales totals for the second, third, or fourth quarter. These
records contain a varying number of repeating fields.

The DATA step that you just wrote won't work with a varying number of repeating fields because
now the value of Quarter is not constant for every record.

data perm.sales97;

 infile data97;

 input ID $ @;

 do Quarter=1 to 4;

 input Sales : comma. @;

 output;

 end;

run;

Using the MISSOVER Option

You can adapt the DATA step to accommodate a varying number of values for Sales .

Like the previous example with the same number of repeating fields, your DATA step must read
the same record more than once. However, you need to prevent the input pointer from moving to
the next record when there are missing values for Sales .

You can use the MISSOVER option in an INFILE statement to prevent SAS from reading the next
record when missing values are encountered at the end of a record. Essentially, records that
have a varying number of repeating fields are records that contain missing values, so you need to
specify the MISSOVER option here as well.

 553

Because there is at least one value for the repeating field, Sales , in each record, the first INPUT
statement reads both the value for ID and the first value for Sales in the first record. The trailing
@ holds the record so that any subsequent repeating fields can be read.

data perm.sales97;

 infile data97 missover;

 input ID $ Sales : comma. @;

Note SAS provides several options to control reading past the end of a line. You've

seen the MISSOVER option for setting remaining INPUT statement variables to
missing values if the pointer reaches the end of a record. You can also use
other options such as the TRUNCOVER option , which reads column or
formatted input when the last variable that is read by the INPUT statement
contains varying-length data. The TRUNCOVER option assigns the contents of
the input buffer to a variable when the field is shorter than expected.

Other related options include FLOWOVER (the default), STOPOVER, and
SCANOVER. For more information about TRUNCOVER and related options,
see the SAS documentation.

Executing SAS Statements While a Condition Is True

Now consider how many times to read each record. Earlier, you created an index variable named
Quarter whose value ranged from 1 to 4 because there were four repeating fields.

Now you want to read the record only while a value for Sales exists. Use a DO WHILE
statement instead of the iterative DO statement, enclosing the expression in parentheses. In the
example below, the DO WHILE statement executes while the value of Sales is not equal to a
missing value (which is represented by a period).

data perm.sales97;

 infile data97 missover;

 input ID $ Sales : comma. @;

 do while (sales ne .);

Creating a Counter Variable

Because the DO WHILE statement does not create an index variable, you can create your own
"counter" variable. You can then use a Sum statement to increment the value of the counter
variable each time the DO WHILE loop executes.

In the example below, the assignment statement that precedes the loop creates the counter
variable Quarter and assigns it an initial value of zero. Each time the DO WHILE loop executes,
the Sum statement increments the value of Quarter by one.

data perm.sales97;

 infile data97 missover;

 input ID $ Sales : comma. @;

 Quarter=0;

 554

do while (sales ne .);

 quarter+1;

Completing the DO WHILE Loop

Now look at the other statements that should be executed in the DO WHILE loop. First, you need
an OUTPUT statement to write the current observation to the data set. Then, another INPUT
statement reads the next value for Sales and holds the record. You complete the DO WHILE
loop with an END statement.

data perm.sales97;

 infile data97 missover;

 input ID $ Sales : comma. @;

 Quarter=0;

 do while (sales ne .);

 quarter+1;

 output;

 input sales : comma. @;

 end;

run;

Processing a DATA Step That Has a Varying Number of Repeating
Fields

Here is the new version of the DATA step.

data perm.sales97;

 infile data97 missover;

 input ID $ Sales : comma. @;

 Quarter=0;

 do while (sales ne .);

 quarter+1;

 output;

 input sales : comma. @;

 end;

run;

During the first iteration of the DATA step, values for ID and Sales are read. Quarter is
initialized to zero.

 555

The DO WHILE statement checks to see if Sales has a value at the top of the loop. Because it
does have a value, the other statements in the DO loop execute.

The INPUT statement reads the next value for Sales , the end of the loop is reached, and control
returns to the DO WHILE statement.

The condition is checked at the top of the loop and Sales still has a value, so the loop executes
again.

Quarter is incremented to 2, and the values in the program data vector are written as the
second observation.

 556

The MISSOVER option prevents the input pointer from moving to the next record in search of
another value for Sales . At this point, Sales has no value.

Because the condition is now false, the statements in the loop are not executed.

Instead, control returns to the top of the DATA step, the values in the program data vector are
reset to missing, and the input pointer moves to column 1 of the next record. The DATA step
continues executing until all the values for Sales are read.

PROC PRINT output for the data set shows a varying number of observations for each employee.

 proc print data=perm.sales97;

 run;

 557

Obs ID Sales Quarter

1 1824 1323.34 1

2 1824 2472.85 2

3 1943 2199.23 1

4 2046 3598.48 1

5 2046 4697.98 2

6 2046 4598.45 3

7 2063 4963.87 1

8 2063 3434.42 2

9 2063 2241.64 3

10 2063 2759.11 4

Summary

Text Summary

File Formats

One raw data record can contain enough information to produce several observations. Data is
stored in this manner in order to reduce the size of the entire file. The data can be organized into
� repeating blocks of data
� an ID field followed by the same number of repeating fields
� an ID field followed by a varying number of repeating fields.

Reading Repeating Blocks of Data

To create multiple observations from a record that contains repeating blocks of data, the DATA
step needs to hold the current record until each block of data has been read and written to the
data set as an observation. The DATA step should include statements that
� read the first block of values and hold the current record with the double trailing at sign

(@@) line-hold specifier
� optionally add a FORMAT statement to display date or time values with a specified

format
� write the first block of values as an observation
� execute the DATA step until all repeating blocks have been read.

Reading the Same Number of Repeating Fields

To create multiple observations from a record that contains an ID field and the same number of
repeating fields, you must execute the DATA step once for each record, repetitively reading and
writing values in one iteration. The DATA step should include statements that
� read the ID field and hold the current record with the single trailing at sign (@) line-hold

specifier
� execute SAS statements using an iterative DO loop . The iterative DO loop repetitively

processes statements that

 558

o read the next value of the repeating field and hold the record with the @ line-
hold specifier

o explicitly write an observation to the data set by using an OUTPUT statement.
� complete the iterative DO loop with an END statement.

Reading a Varying Number of Repeating Fields

To create multiple observations from a record that contains an ID field and a varying number of
repeating fields, you must execute the DATA step once for each record, repetitively reading and
writing values in one iteration while the value of the repeating field exists. The DATA step should
include statements that
� prevent SAS from reading the next record if missing values were encountered in the

current record by using the MISSOVER option
� read the ID field and the first repeating field, and then hold the record with the single

trailing at sign (@) line-hold specifier
� optionally create a counter variable
� execute SAS statements while a condition is true, using a DO WHILE loop. A DO WHILE

loop repetitively processes statements that
o optionally increment the value of the counter variable by using a Sum statement
o explicitly add an observation to the data set by using an OUTPUT statement
o read the next value of the repeating field and hold the record with the single

trailing at sign (@) line-hold specifier.
� complete the DO WHILE loop with an END statement.

Points to Remember
� The double trailing at sign (@@) holds a record across multiple iterations of the DATA

step until the end of the record is reached.
� The single trailing at sign (@) releases a record when control returns to the top of the

DATA step.
� Use an END statement to complete DO loops and DO WHILE loops.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using
the answer key in the appendix.

1. Which is true for the double trailing at sign (@@)?
a. It enables the next INPUT statement to read from the current record

across multiple iterations of the DATA step.
b. It must be the last item that is specified in th e INPUT statement.
c. It is released when the input pointer moves past the end of the record.
d. All of the above.

2. A record that is being held by a single trailing at sign (@) is automatically
released when

a. the input pointer moves past the end of the reco rd.
b. the next iteration of the DATA step begins.
c. another INPUT statement that has a single traili ng at sign (@) executes.
d. another value is read from the observation.

3. Which SAS program correctly creates a separate obse rvation for each block of
data?

 559

a. ata perm.produce;

b. infile fruit;

c. input Item $4. Variety : $10.;

d. run;

e. data perm.produce;

f. infile fruit;

g. input Item $4. Variety : $10. @;

h. run;

i. data perm.produce;

j. infile fruit;

k. input Item $ Variety : $10. @@;

l. run;

m. data perm.produce;

n. infile fruit @@;

o. input Item $4. Variety : $10.;

p. run;

4. Which SAS program segment reads the values for ID a nd holds the record for
each value of Quantity , so that three observations are created for each
record?

a. data work.sales;

b. infile unitsold;

c. input ID $;

d. do week=1 to 3;

e. input Quantity : comma.;

f. output;

g. end;

h. run;

i. data work.sales;

j. infile unitsold;

k. input ID $ @@;

l. do week=1 to 3;

m. input Quantity : comma.;

n. output;

o. end;

 560

p. run;

q. data work.sales;

r. infile unitsold;

s. input ID $ @;

t. do week=1 to 3;

u. input Quantity : comma.;

v. output;

w. end;

x. run;

y. data work.sales;

z. infile unitsold;

aa. input ID $ @;

bb. do week=1 to 3;

cc. input Quantity : comma. @;

dd. output;

ee. end;

ff. run;

5. Which SAS statement repetitively executes several s tatements when the value
of an index variable named Count ranges from 1 to 50, incremented by 5?

a. do count=1 to 50 by 5;
b. do while count=1 to 50 by 5;
c. do count=1 to 50 + 5;
d. do while (count=1 to 50 + 5);

6. Which option below, when used in a DATA step, write s an observation to the
data set after each value for Activity has been read?

a. do choice=1 to 3;

b. input Activity : $10. @;

c. output;

d. end;

e. run;

f. do choice=1 to 3;

g. input Activity : $10. @;

h. end;

i. output;

j. run;

k. do choice=1 to 3;

l. input Activity : $10. @;

m. end;

n. run;
o. a and b

 561

7. Which SAS statement repetitively executes several s tatements while the value
of Cholesterol is greater than 200?

a. do cholesterol > 200;
b. do cholesterol gt 200;
c. do while (cholesterol > 200);
d. do while cholesterol > 200;

8. Which choice below is an example of a Sum statement ?
a. totalpay=1;
b. totalpay+1;
c. totalpay*1;
d. totalpay by 1;

9. Which program creates the SAS data set Perm.Topstor e from the raw data file
shown below?

SAS Data Set Perm.Topstore

Store Sales Month

1001 77163.19 1

1001 76804.75 2

1001 74384.27 3

1002 76612.93 1

1002 81456.34 2

1002 82063.97 3

1003 82185.16 1

1003 79742.33 2

a. data perm.topstores;

b. infile sales98 missover;

c. input Store Sales : comma. @;

d. do while (sales ne .);

e. month + 1;

f. output;

g. input sales : comma. @;

h. end;

i. run;
j.

k. data perm.topstores;

l. infile sales98 missover;

 562

m. input Store Sales : comma. @;

n. do while (sales ne .);

o. Month=0;

p. month + 1;

q. output;

r. input sales : comma. @;

s. end;

t. run;
u.

v. data perm.topstores;

w. infile sales98 missover;

x. input Store Sales : comma. Month @;

y. do while (sales ne .);

z. month + 1;

aa. input sales : comma. @;

bb. end;

cc. output;

dd. run;
ee.

ff. data perm.topstores;

gg. infile sales98 missover;

hh. input Store Sales : comma. @;

ii. Month=0;

jj. do while (sales ne .);

kk. month + 1;

ll. output;

mm. input sales : comma. @;

nn. end;

oo. run;

10. How many observations are produced by the DATA step that reads this external
file?

a. 3
b. 5
c. 12
d. 15

Answers

 563

1. Correct answer: d

The double trailing at sign (@@) enables the next INPUT statement to read from the current
record across multiple iterations of the DATA step. It must be the last item that is specified in
the INPUT statement. A record that is being held by the double trailing at sign (@@) is not
released until the input pointer moves past the end of the record, or until an INPUT statement
that has no line-hold specifier executes.

2. Correct answer: b

Unlike the double trailing at sign (@@), the single trailing at sign (@) is automatically
released when control returns to the top of the DATA step for the next iteration. The trailing
@ does not toggle on and off. If another INPUT statement that has a trailing @ executes, the
holding effect is still on.

3. Correct answer: c

Each record in this file contains three repeating blocks of data values for Item and Variety .
The INPUT statement reads a block of values for Item and Variety , and then holds the
current record by using the double trailing at sign (@@). The values in the program data
vector are written to the data set as the first observation. In the next iteration, the INPUT
statement reads the next block of values for Item and Variety from the same record.

4. Correct answer: d

This raw data file contains an ID fieldthat is followed by repeating fields. The first INPUT
statement reads the values for ID and uses the @ line-hold specifier to hold the current
record for the next INPUT statement in the DATA step. The second INPUT statement reads
the values for Quantity . When all of the repeating fields have been read, control returns to
the top of the DATA step, and the record is released.

5. Correct answer: a

The iterative DO statement begins the execution of a loop based on the value of an index
variable. Here, the loop executes when the value of Count ranges from 1 to 50, incremented
by 5.

6. Correct answer: a

The OUTPUT statement must be included in the loop so that each time a value for
Activity is read, an observation is immediately written to the data set.

7. Correct answer: c

The DO WHILE statement checks for the condition that Cholesterol is greater than 200.
The expression must be enclosed in parentheses. The expression is evaluated at the top of
the loop, before any statements are executed. If the condition is true, the DO WHILE loop
executes. If the expression is false the first time it is evaluated, then the loop never executes.

8. Correct answer: b

The Sum statement adds the result of an expression to a counter variable. So the + sign is an
essential part of the Sum statement. Here, the value of TotalPay is incremented by 1.

 564

9. Correct answer: d

The assignment statement that precedes the DO WHILE loop creates the counter variable
Month and assigns an initial value of zero to it. Each time the DO WHILE loop executes, the
Sum statement increments the value of Month by 1.

10. Correct answer: c

This DATA step produces one observation for each repeating field. The MISSOVER option in
the INFILE statement prevents SAS from reading the next record when missing values occur
at the end of a record. Every observation contains one value for Flavor , paired with the
corresponding value for ID . Because there are 12 values for Flavor , there are 12
observations in the data set

